library(tidymodels)
library(nycflights13)
library(sparsevctrs)
flights$arr_time <- NULL
flights$time_hour <- NULL
flights <- flights[!is.na(flights$arr_delay), ]
rec <- recipe(arr_delay ~ ., data = flights) |>
step_impute_mean(all_numeric_predictors()) |>
step_unknown(all_nominal_predictors()) |>
step_dummy(all_nominal_predictors())
mod <- boost_tree() |>
set_engine("xgboost") |>
set_mode("regression")
wf_spec <- workflow(rec, mod)