viz_prob_region.Rd
This function is mostly useful in an educational setting. Can only be used with trained workflow objects with 2 numeric predictor variables.
viz_prob_region(x, new_data, resolution = 100, expand = 0.1, facet = FALSE)
x | trained `workflows::workflow` object. |
---|---|
new_data | A data frame or tibble for whom the preprocessing will be applied. |
resolution | Number of squared in grid. Defaults to 100. |
expand | Expansion rate. Defaults to 0.1. This means that the width and height of the shaded area is 10 data. |
facet | Logical, whether to facet chart by class. Defaults to FALSE. The chart have been minimally modified to allow for easier styling. |
`ggplot2::ggplot` object
library(parsnip) library(workflows) iris2 <- iris iris2$Species <- factor(iris2$Species == "setosa", labels = c("setosa", "not setosa")) svm_spec <- svm_rbf() %>% set_mode("classification") %>% set_engine("kernlab") svm_fit <- workflow() %>% add_formula(Species ~ Petal.Length + Petal.Width) %>% add_model(svm_spec) %>% fit(iris2) viz_prob_region(svm_fit, iris2)viz_prob_region(svm_fit, iris2, resolution = 20)viz_prob_region(svm_fit, iris2, expand = 1)viz_prob_region(svm_fit, iris2, facet = TRUE)knn_spec <- nearest_neighbor() %>% set_mode("classification") %>% set_engine("kknn") knn_fit <- workflow() %>% add_formula(class ~ umap_1 + umap_2) %>% add_model(knn_spec) %>% fit(mnist_sample) viz_prob_region(knn_fit, mnist_sample, facet = TRUE)