The goal of animalshelter is to provide a data set for Long Beach Animal Shelter.
Installation
You can install the development version of animalshelter like so:
# install.packages("devtools")
devtools::install_github("EmilHvitfeldt/animalshelter")
Example
This package contains one data set longbeach
,
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr 1.1.4 ✔ readr 2.1.5
#> ✔ forcats 1.0.0 ✔ stringr 1.5.1
#> ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
#> ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
#> ✔ purrr 1.0.2
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(animalshelter)
longbeach
#> # A tibble: 29,787 × 23
#> animal_id animal_name animal_type primary_color secondary_color sex
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 A693708 *charlien dog white <NA> Female
#> 2 A708149 <NA> reptile brown green Unknown
#> 3 A638068 <NA> bird green red Unknown
#> 4 A639310 <NA> bird white gray Unknown
#> 5 A618968 *morgan cat black white Female
#> 6 A730385 *brandon rabbit black white Neutered
#> 7 A646202 <NA> bird black <NA> Unknown
#> 8 A628138 <NA> other gray black Unknown
#> 9 A597464 <NA> cat black <NA> Unknown
#> 10 A734321 sophie dog cream <NA> Spayed
#> # ℹ 29,777 more rows
#> # ℹ 17 more variables: dob <date>, intake_date <date>, intake_condition <chr>,
#> # intake_type <chr>, intake_subtype <chr>, reason_for_intake <chr>,
#> # outcome_date <date>, crossing <chr>, jurisdiction <chr>,
#> # outcome_type <chr>, outcome_subtype <chr>, latitude <dbl>, longitude <dbl>,
#> # intake_is_dead <chr>, outcome_is_dead <lgl>, was_outcome_alive <dbl>,
#> # geopoint <chr>
glimpse(longbeach)
#> Rows: 29,787
#> Columns: 23
#> $ animal_id <chr> "A693708", "A708149", "A638068", "A639310", "A618968…
#> $ animal_name <chr> "*charlien", NA, NA, NA, "*morgan", "*brandon", NA, …
#> $ animal_type <chr> "dog", "reptile", "bird", "bird", "cat", "rabbit", "…
#> $ primary_color <chr> "white", "brown", "green", "white", "black", "black"…
#> $ secondary_color <chr> NA, "green", "red", "gray", "white", "white", NA, "b…
#> $ sex <chr> "Female", "Unknown", "Unknown", "Unknown", "Female",…
#> $ dob <date> 2013-02-21, NA, NA, NA, 2014-12-18, 2023-04-19, NA,…
#> $ intake_date <date> 2023-02-20, 2023-10-03, 2020-01-01, 2020-02-02, 201…
#> $ intake_condition <chr> "ill mild", "normal", "injured severe", "ill severe…
#> $ intake_type <chr> "stray", "stray", "wildlife", "wildlife", "stray", "…
#> $ intake_subtype <chr> "otc", "field", "field", "field", "field", "otc", "f…
#> $ reason_for_intake <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
#> $ outcome_date <date> 2023-02-26, 2023-10-03, 2020-01-01, 2020-02-02, 201…
#> $ crossing <chr> "[2600 BLK LONG BEACH BLVD, LONG BEACH CA, 90806", "…
#> $ jurisdiction <chr> "Long Beach", "Long Beach", "Long Beach", "Long Beac…
#> $ outcome_type <chr> "euthanasia", "rescue", "euthanasia", "transfer", "r…
#> $ outcome_subtype <chr> "ill severe", "other resc", "inj severe", "lbah", "l…
#> $ latitude <dbl> 33.80479, 33.86800, 33.76048, 33.76246, 33.84950, 33…
#> $ longitude <dbl> -118.1889, -118.2009, -118.1481, -118.1597, -118.194…
#> $ intake_is_dead <chr> "Alive on Intake", "Alive on Intake", "Alive on Inta…
#> $ outcome_is_dead <lgl> TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE,…
#> $ was_outcome_alive <dbl> 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1…
#> $ geopoint <chr> "33.8047935, -118.1889261", "33.8679994, -118.200930…
longbeach |>
count(animal_type)
#> # A tibble: 10 × 2
#> animal_type n
#> <chr> <int>
#> 1 amphibian 3
#> 2 bird 2075
#> 3 cat 14145
#> 4 dog 9768
#> 5 guinea pig 172
#> 6 livestock 10
#> 7 other 1332
#> 8 rabbit 526
#> 9 reptile 344
#> 10 wild 1412
longbeach |>
count(primary_color, sort = TRUE)
#> # A tibble: 76 × 2
#> primary_color n
#> <chr> <int>
#> 1 black 7540
#> 2 gray 3916
#> 3 white 3651
#> 4 brown 3531
#> 5 brown tabby 2242
#> 6 tan 1393
#> 7 gray tabby 1189
#> 8 orange tabby 904
#> 9 calico 520
#> 10 orange 515
#> # ℹ 66 more rows