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More Unsupervised Learning
Another branch of unsupervised learning

- Dimensionality Reduction

take many dimensions and create fewer ones that represent as much of the

original data as possible
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Dimensionality Reduction
Why would you want to do this?

- Allows for visualization of many dimensions in 2 dimensions

- Can be used as a preprocessing step for models that can't handle many

dimensions
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What is Principal Components Analysis?

- Motivation

Suppose you have many dimensions and want to visualize the relationship between

them

If you wanted to do them pairwise then you have  plots to do

This adds up very fast!
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Many plots
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What is Principal Components Analysis?
we want to find a low dimensional representation of the high dimensional data

Specifically, we would want 2 dimensional for plotting purposes

PCA is one such technique that does just that

PCA finds a low-dimensional representation of the data set that contains as much of

the variation as possible in as few columns as possible
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Re-formulation
PCA is a linear combination of the original data such that most of the variation is

captured in the first variable, then second, then third and so one
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PCA Construction
The first principal component of a set of features  is the normalized

linear combination of the features

that has the largest variance

We mean that normalized that .

we refer to  as the loadings of the first principal component.

And think of them as the loading vector 

X1,X2, . . . ,Xp

Z1 = ϕ11X1 + ϕ21X2+. . . +ϕp1Xp

∑p

j=1 ϕ
2
j1 = 1

ϕ11, . . . ,ϕp1

ϕ1
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PCA Construction
These loadings are constrained, otherwise, we don't get any solutions since arbitrarily

large values of the loadings would increase the variance
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How do we get these?
Assuming we have a  data set 

since we are only interested in the variance we assume that the variables have been

centered

n × p X

maximize
ϕ11,...,ϕp1

⎧
⎨⎩

n

∑
i=j

(
p

∑
j=1

ϕj1xij)

2⎫
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p
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j=1

ϕ2
j1 = 1

1

n
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How do we get these?
since we have , then we can write

We are in essence maximizing the sample variance of the  values of .

We refer to  as the scores of the first principal component.

zi1 = ϕ11xi1 + ϕ21xi2+. . . +ϕp1xip

maximize
ϕ11,...,ϕp1

{
n

∑
i=j

z2
i1} subject to

p

∑
j=1

ϕ2
j1 = 1

1

n

n zi1

z11, . . . , zn1

11 / 37



How do we solve that problem?
Luckily this can be solved using techniques from Linear Algebra

more specifically, it can be solved using a eigen decomposition

One of the main strengths of PCA is that you don't need to use optimization to get the

results without approximations!!!!
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Remaining principal components
Once the first principal component is calculated, we can calculate the second principal

component

We find the second principal component  as a linear combination of 

that has the maximal variance out of the linear combinations that are uncorrelated

with 

this is the same as saying that  should be orthogonal to the direction 

Z2 X1, . . . ,Xp

Z1

ϕ2 ϕ1
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Remaining principal components
We can do this to calculate all the principal components

since we are working literately through the principal components, we can calculate

only as many as we want
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The proportion of variance explained
the proportion of variance explained of the th principal component is given by

Don't worry, this is already calculated by the software you use to get PCA

m

∑n
i=1 (∑

p

j=1 ϕjmxij)
2

∑p

j=1 ∑
n

i=1 x
2
ij
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Visualizing PCA
Once we have the principal components there are a couple of things we can visualize
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Art by Allison Horst
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Plotting PC1 against PC2
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Plotting PC1 against PC2
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Plotting PC1 against PC3
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Plotting PC1 against PC3
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Plotting PC2 against PC3
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Plotting PC2 against PC3
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Loadings for PC1
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Loadings for all Principal components
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Percent variance explained by each PCA component
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Alternative intepretation
Interpretation as a rotation of the space
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Scaling of variables
You must think about scaling the variables

Since we are maximizing some value then the magnitude of the variables will matter

If you don't have any prior knowledge of the data, it is advisable to set all the variables

to the same scale
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Uniqueness of Principal Components
The principal components you generate should be unique up to a sign-flip of the

loadings

29 / 37



How is this a dimensionality reduction
technique?
PCA is not a dimensionality reduction method by itself in the strictest sense

You get the reduction by only keeping some of the columns

- by number of columns

- Threshold by variance explained
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Extensions
Think of this problem as

where

-  is a  matrix

-  is a  matrix

-  is a  matrix

X ≈ UV

X n × p

U n × d

V d × p

31 / 37



Extensions
What we want to do is find

subject to some constraints

n

∑
i=1

p

∑
j=1

loss (Xij, (UV )ij)
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PCA

with no constraints

n

∑
i=1

p

∑
j=1

(Xij − (UV )ij)
2
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Sparse PCA

Under the constraint that there is at most  columns in 

In other words, each principal component can contain at most  loadings

n

∑
i=1

p

∑
j=1

(Xij − (UV )ij)
2

k U

k
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K-Means

Under the constraint that there is at most 1 column in 

n

∑
i=1

p

∑
j=1

(Xij − (UV )ij)
2

U
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Non-Negative Matrix Factorization

Under the constraint that all the values of  and  are non-negative

n

∑
i=1

p

∑
j=1

(Xij − (UV )ij)
2

U V
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A Bluffer's Guide to Dimension Reduction
- Leland McInnes
More about this: https://www.youtube.com/watch?v=9iol3Lk6kyU&t=6s
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