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Moving beyond Linearity
We have so far worked (mostly) with linear models

linear models are great because they are simple to describe, easy to work with in terms

of interpretation and inference

However, the linear assumption is often not satisfied

This week we will see what happens once we slowly relax the linearity assumption
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Polynomial regression
Simple linear regression

2nd degree polynomial regression

yi = β0 + β1xi + ϵi

yi = β0 + β1xi + β2x
2
i
+ ϵi
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Polynomial regression
Polynomial regression function with  degrees

Notice how we can treat the polynomial regression as

d

yi = β0 + β1xi + β2x
2
i
+ β3x

3
i
+. . .+βdx

d
i
+ ϵi
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Polynomial regression
We are not limited to only use 1 variable when doing polynomial regression

Instead of thinking of it as fitting a "polynomial regression" model

Think of it as fitting a linear regression using polynomially expanded variables
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Polynomial regression
2 degrees
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Polynomial regression
3 degrees
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Polynomial regression
4 degrees
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Polynomial regression
10 degrees
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Step Functions
We can also try to turn continuous variables into categorical variables

If we have data regarding the ages of people, then we can arrange the groups such as

- under 21

- 21-34

- 35-49

- 50-65

- over 65
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Step Functions
We divide a variable into multiple bins, constructing an ordered categorical variable

14 / 31



Step Functions
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16 / 31



Step Functions
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Step Functions
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Step Functions
Depending on the number of cuts, you might miss the action of the variable in

question

Be wary about using this method if you are going in blind, you end up creating a lot

more columns of your data set and your flexibility increase drastically
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Basis Functions
Both polynomial and piecewise-constant regression models are special cases of the

basis function modeling approach

The idea is to have a selection of functions  that we apply to

our predictors

Where  are fixed and known

b1(X), b2(X), . . . , bK(X)

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi)+. . . +βKbK(xi) + ϵi

b1(X), b2(X), . . . , bK(X)
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Basis Functions
The upside to this approach is that we can take advantage of the linear regression

model for calculations along with all the inference tools and tests

This does not mean that we are limited to using linear regression models when using

basis functions
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Regression Splines
We can combine polynomial expansion and step functions to create piecewise

polynomials

Instead of fitting 1 polynomial over the whole range of the data, we can fit multiple

polynomials in a piecewise manner
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Regression Splines
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Regression Splines
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Regression Splines

25 / 31



Regression Splines
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Local Regression
local regression is a method where the modeling is happening locally

namely, the fitted line only takes in information about nearby points
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28 / 31



Local Regression
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Generalized Additive Models
Generalized Additive Models provide a general framework to extend the linear

regression model by allowing non-linear functions of each predictor while maintaining

additivity

The standard multiple linear regression model

is extended by replacing each linear component  with a smooth linear function 

yi = β0 + β1xi1 + β2xi2+. . .+βpxip + ϵi

βjxij
fj(xij)
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Generalized Additive Models
Given us

Since we are keeping the model additive we left with a more interpretable model since

we are able to look at the effect of each of the predictors on the response by keeping

the other predictors constant

yi = β0 + f1(xi1) + f2(xi2) + f3(xi3)+. . . +fp(xip) + ϵi
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