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Classification
We have 2 or more groups in our data and we want to create rules to detect/classify

them

We looked at logistic regression last week

This week we will explore 3 more methods

- Linear Discriminant Analysis (LDA)

- Quadratic Discriminant Analysis (QDA)

- K Nearest Neighbor (KNN)
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LDA
logistic regression tries to modeling  directly

Model the distribution of predictors  in each of the classes . Then use Bayes'

theorem to flip these around to create estimates for 

Pr(Y = k|X = x)

X k
Pr(Y = k|X = x)

3 / 31



LDA
- LDA is more stable than logistic regression when the classes are well separated

- If  is small and the distribution of the predictors are approximately normal in

each of the classes LDA is more stable than logistic regression

- LDA naturally extends to work with more than 2 classes

n
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LDA
For simplicity, we start with the case of 1 predictor

Notation:

denote the density function of  for an observation that comes from the th class.

-  is large if there is a high probability that an observation is part of class 

when 

-  is small if there is a low probability that an observation is part of class 

when 

fk(x) = Pr(X = x|Y = k)

X k

fk(x) k
X = k

fk(x) k
X = k
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Bayes' Theorem
let  represent the overall(prior) probability that a randomly chosen observation is

associated with the th class

We have that

with the abbreviation 

πk

k

Pr(Y = k|X = x) =
πkfk(x)

∑
K
l=1 πlfl(x)

pk(X) = Pr(Y = k|X)
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Bayes' Theorem

Idea:

estimate  and  and plug those in instead of directly computing 

Pr(Y = k|X = x) =
πkfk(x)

∑
K
l=1 πlfl(x)

πk fk(x) pk(X)
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LDA
To estimate  we start by making some assumptions for 

- We assume that  is normal, for 1-dimensional the normal density takes the

form

where  and  are the mean and variance for the th class

fk(x) fk(x)

fk(x)

fk(x) = exp(− (x − μk)2)
1

√2πσk

1

2σ2
k

μk σ2
k k
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LDA
To estimate  we start by making some assumptions for 

- We assume that : there is a shared variance term across all 

classes

We denote this shared variable by 

Plugging everything in we get

fk(x) fk(x)

σ2
1 =. . . = σ2

K
K

σ2

pk(x) =

πk exp(− (x − μk)2)
1

√2πσ

1

2σ2

∑
K
l=1 πl exp(− (x − μl)2)

1

√2πσ

1

2σ2
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LDA
Taking the log and rearranging some terms we an equivalent function

which we what to find the largest value for

So now we just have to estimate the means , prior probabilities 

and the shared variance 

So we have  parameters to estimate

δk(x) = x ⋅ − + log(πk)
μk

σ2

μ2
k

2σ2

μ1, . . . , μK π1, . . . , πK

σ2

2K + 1
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LDA
The estimate we will use are

where  is the number of observations overall and  is the number of observations in

the th class

μ̂k = ∑
i:yi=k

xi

1

nk

σ̂ =
K

∑
k=1

∑
i:yi=k

(xi − μ̂k)21

n − K

n nk

K
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LDA
We also estimate the prior probabilities with

We plug in our estimate and get the estimator

π̂k =
nk

n

δ̂ k(x) = x ⋅ − + log(π̂k)
μ̂k

σ̂2

μ̂
2
k

2σ̂2
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LDA
We need to extend the LDA classifier to work with multiple predictors

For this, to work we assume that  is drawn from a multivariate

normal distribution, with a class-specific mean vector and a common covariance

matrix.

X = (X1, X2, . . . , Xp)
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LDA
The multivariate normal density is defined as

f(x) = exp(− (x − μ)T Σ−1(x − μ))
1

(2π)p/2|Σ|1/2

1

2
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LDA
Plugging in a rearranging we get

This is the vector/matrix version of what we saw for 

if  then this simplifies back to the earlier case

δk(x) = xT Σ−1μk − μY
k

Σ−1μk + log(πk)
1

2

p = 1

p = 1
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LDA
the linear discriminant analysis gets its name because the discriminant function is a

linear combination of x and the decision boundary is linear
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QDA
We made a couple of assumptions of the distribution of the predictors X to construct

the LDA classifier

If we relax the assumption that each class has its own covariance matrix then we get

the quadratic discriminant analysis (QDA) model

We assume that an observation from the th class is of the form  where

 is the covariance matrix for the th class.

k X ∼ N(μk, Σk)
Σk k
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QDA
The discriminant function under this assumption has the form

with these terms being new for the QDA over LDA

QDA gets its name because the discriminant function is quadratic in 

We end up getting a quadratic decision boundaries

δk(x) = − xT Σ−1
k

x + xT Σ−1μk − μY
k

Σ−1μk− log |Σk| + log(πk)
1

2

1

2

1

2

x
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Why would one prefer QDA over LDA?
Bias-variance trade-off!

LDA has a lot fewer parameters then QDA

LDA is a much less flexible classifier (partly because it is linear) and has a lower

variance

vs
p(p + 1)

2

Kp(p + 1)

2
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Why would one prefer QDA over LDA?
If LDA's assumption that the k classes share a common covariance matrix is badly off,

then LDA can suffer from high bias.

If you have few observation and you want to reduce variance then you need to use LDA

other QDA

In the end, if you have a linear decision boundary in your data then an LDA will work

just as good as a QDA but the QDA will have a higher variance since it needs to

estimate a larger number of parameters
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Logistic regression
The groups may have quite different 

Not so sensitive to outliers

concentrates more on examples near the

class boundary and basically disregards

cases at the "backside" of the

distributions.

LDA
The groups should have similar 

Quite sensitive to outliers

LDA or logistic regression
Only applicable for K = 2

n n
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KNN
k-nearest neighbor was introduced in the second chapter and we will catch up this

week

We want to estimate the conditional distribution of  given  and classify an

observation to the class with the highest probability

K-nearest neighbor takes this literally and classifies an observation solely based on

what the classes of its neighbors would be in the training data set.

Y X
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KNN

For  the algorithm predicts the new points only according to the closest

neighbors

For  the algorithm predicts whichever class appears most often

Pr(Y = k|X = x0) = ∑
i∈N0

I(yi = k)
1

K

K = 1

k = 5
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KNN
K is typically taken to be odd to avoid ties

We don't really do any modeling, the model queries the training data to find the

neighbors for new points
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Penguins data
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KNN: K = 1
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KNN: K = 5
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KNN: K = 11
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KNN: K = 25
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KNN
Does not like high-dimensional data

Is VERY flexible

we have to carry around all the data

Here scaling matter!!
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KNN regression
KNN can also be used for regression tasks as well by taking a weighted average for the

neighbors to give the prediction
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