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Extensions of the Linear Model
Why?

Standard linear regression model provides interpretable results and works quite well

on many real-world problems

However, using such a model makes strong assumptions:

The relationship between predictors and response are

- Additive

- Linear
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Removing the additive assumption
Let's consider the linear regression model

This model does only have additive effects

Y = β0 + β1X1 + β2 + ε
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Removing the additive assumption
One way of relaxing the additive assumption and allow for an interaction term is by

This interaction effect enables the following

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

Y = β0 + (β1 + β3X2)X1 + β2X2 + ε

Y = β0 + ~
β1X1 + β2X2 + ε
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Removing the additive assumption
Now the effect of  is no longer constant

Adjusting  will change the impact of  on .

It is sometimes the case that an interaction term has a very small p-value but the main

associated effects do not

X1

X2 X1 Y
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Hierachical Principle
If we include an interaction term in a model, we should also include the main effects,

even if the p-values associated with their coefficients are not significant

If the p-value associated with  and  are not very small we should not worry and

we should include them if the p-value associated with  is very small

X1 X2
X1X2
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Non-linear relationships
The reality may be that the relationship between the response and predictors is non-

linear

One of the ways we have looked at is to do polynomial regression
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Polynomial Regression
Turning

into

Which is extensible to

(although we rarely use )

Y = β0 + β1X + ε

Y = β0 + β1X + β2X2 + ε

Y = β0 + β1X + β2X2+. . . +βpXp + ε

p > 3
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Polynomial Regression
Matrix notation
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Polynomial Regression
Assuming , since  is a Vandermonde matrix, the invertibility condition is

guaranteed to hold if all the  values are distinct and we get a unique least-squares

solution

n > p X

Xi
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Potential Problems
When we fit a linear regression model to a particular data set, many problems may

occur
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Indicator

- QQ-plot

- Shapiro–Wilk test

- Skewness, Kurtosis

- Histogram; Boxplot

Remedy

Transformations

or

non-parametric metrics

Non-normality
The Relationship between  and  is not linearY X
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Heteroscedasticity
Non-equal variance
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Indicator

- Residual plots

- Levene

- Breusch-Pagan test

Remedy

Apply transformations to , such as 

 or 

or do weighted least squares

Heteroscedasticity

Y

log Y √Y
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Linearity
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Indicator

- Residual plots

- Lack-of-fit test

Remedy

- Add predictors

- Use non-linear transformation of

the predictors such as , , or

Linearity

log Y √Y
X2
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Indepence
Correlation of error terms

The error terms  should be correlated

if they are correlated then we may have an unwarranted sense of confidence in our

model (narrower confidence bands)

ε1, ε2, . . . , εn
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Indicator

- Residual plots, look for trends

Remedy

- Fit time series models

- Improve experimental design

Indepence
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Outliers / high leverage point
An outlier is a point for which  is far from the value predicted by the model

A high leverage point point is a point that has extreme predictor values

high leverage observations tend to have a sizeable impact on the estimated regression

line

Yi
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Indicator

- Residual plots

- Studentized residuals plots

Remedy

- Find the reason why they are the

way they are

- Delete or reweight (you need a

good reason to do this)

Outliers / high leverage point
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Collinearity
Two or more predictor variables are closely related to one another
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Collinearity
Indicator

Look at the correlation matrix

Access multicollinearity by computing the variance inflation factor (VIF)

VIF is the ratio of the variance of  when fitting full model divided by variance of  if

fit on its own

The smallest value is 1 which is great

if VIF > 10 we have problems

β̂j β̂j
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Collinearity
Remedy

- Variable selection

- Ridge regression
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