Building The Regression Model Model Selection

AU STAT-615

Emil Hvitfeldt

2021-03-24

Model Selection

The goal of chapter 9 is to discuss methods for selecting predictor variables regarding an exploratory observational study

Criteria for Model Selection

In general for any set of p-1 predictors, 2^{p-1} alternative models can be constructed

This becomes a very difficult talk as p increases

p	possibilities
1	2
2	4
3	8
4	16
5	32
10	1024
15	32768

Criteria for Model Selection

We will focus on six criteria for comparing the regression models

-
$$R_p^2$$

-
$$R^2_{lpha,p}$$

-
$$C_p$$

-
$$AIC_p$$

- SBC_p
- $PRESS_p$

Notation

- We denote the number of potential X variables by P-1
- All regression models contain an intercept β_0
- The number of X variables in a subset will be denoted by p-1. Thus we have $1 \leq p \leq P$
- We assume that the number of observations exceeds the number of potential parameters

 R_p^2 or SSE_p

The R_p^2 criterion is equivalent to using the error sum of squares SSE_p as the criterion With the SSE_p criterion subsets for which SSE_p is small are considered "good" The equivalence follows from

$$R_p^2 = 1 - rac{SSE_p}{SSTO}$$

since *SSTO* is constant for all possible regression models

 R_p^2 or SSE_p

Note:

The intent in using the R_p^2 criterion is to find the point where adding more X variables is not worthwhile because it leads to a very small increase in R_p^2

 $R^2_{lpha,p}$ or MSE_p

The adjusted coefficient of multiple determination $R^2_{\alpha,p}$ can be suggested as an alternative of R^2_p

$$R_{lpha,p}^2 = 1 - rac{n-1}{n-p} \cdot rac{SSE_p}{SSTO} = 1 - rac{MSE_p}{rac{SSTO}{n-1}}$$

it can be shown that $R^2_{\alpha,p}$ increase if and only if MSE_p decreases since $\frac{SSTO}{n-1}$ is fixed for any number of predictors

Mallows' C_p Criterion

The criterion is concerned with the total mean squared error of the n fitted values for each subset regression model

The mean squared error concept involves the total error in each fitted value

$${\hat{Y}_i}-{\mu_i}$$

Mallows' C_p Criterion

This total error is made up of a bias component and a random error component

Bias component

$$E\{\hat{Y}_i\}-\mu_i$$

Random error component

 $\hat{Y_i} - E\{\hat{Y_i}\}$

Mallows'
$$C_p$$
 Criterion

It can be shown that

$$E\left\{\hat{Y}_{i}-\mu_{i}\right\}^{2}=\left(E\{\hat{Y}_{i}\}-\mu_{i}\right)^{2}+\sigma^{2}\left\{\hat{Y}_{i}\right\}$$

therefore, the total mean squared error for all n fitted values is given by

$$\begin{split} \sum_{i=1}^{2} \left\{ Y_{i} - \mu_{i} \right\}^{2} &= \sum_{i=1}^{n} \left[\left(E\{\hat{Y}_{i}\} - \mu_{i} \right)^{2} + \sigma^{2} \left\{ \hat{Y}_{i} \right\} \right] \\ &= \sum_{i=1}^{n} \left(E\{\hat{Y}_{i}\} - \mu_{i} \right)^{2} + \sum_{i=1}^{n} \sigma^{2} \left\{ \hat{Y}_{i} \right\} \end{split}$$

Mallows'
$$C_p$$
 Criterion

The criterion measure, denoted by Γ_p is simply

$$\Gamma_p = rac{1}{\sigma^2} \Biggl[\sum_{i=1}^n \left(E\{\hat{Y_i}\} - \mu_i
ight)^2 + \sum_{i=1}^n \sigma^2 \left\{ \hat{Y_i}
ight\} \Biggr]$$

The model which includes all P-1 potential X variables is assumed to have been carefully chosen so that $MSE(X_1, X_2, \ldots, X_{P-1})$ is an unbiased estimator of σ^2

Mallows'
$$C_p$$
 Criterion

It can be shown that C_p is an estimator of Γ_p

$$C_p = rac{SSE_p}{MSE(X_1,\ldots,X_{P-1})} - (n-2p)$$

Mallows' C_p Criterion

Notes:

When the C_p values for all possible regression models are plotted against p, those models with little bias will tend to fall near the line $C_p = p$

Models with substantial bias will tend to fall considerably above this line

In using the C_p criterion, we seek to identify subsets of X variables for which the C_p value is small **and** the C_p value is near p (Bias of regression model is small)

AIC_p and SBC_p

Alternative criteria that provide penalties for adding predictors are Akaike's Information Criterion (\$AIC_p\$) and Schwarz' Bayesian Criterion (\$SBC_p\$)

We search for models that have small values of AIC_p or SBC_p

$$egin{aligned} AIC_p &= n\ln(SSE_p) - n\ln(n) + 2p\ SBC_p &= n\ln(SSE_p) - n\ln(n) + \ln(n)p \end{aligned}$$

- $n \ln(n) SSE_p$ decreases as p increases

$PRESS_p$ Criterion

The $PRESS_p$ criterion is a measure of how well the use of the fitted values for a subset model can predict the observed responses Y_i

Note:

The press measure differs from SSE in that each fitted value \hat{Y}_i for the *PRESS* criterion is obtained by deleting the ith case from the data set, estimating the regression function for the subset model from the remaining n - 1 cases, and then using the fitted regression function to obtain the predicted value $\hat{Y}_{i(i)}$ for the ith case

$$PRESS_p = \sum_{i=1}^n \left(Y_i - \hat{Y_{i(i)}}
ight)^2$$

models with small press values are considered good candidate models