Building The Regression Model Model Selection

AU STAT-615

Emil Hvitfeldt

2021-03-24

Model Selection

The goal of chapter 9 is to discuss methods for selecting predictor variables regarding an exploratory observational study

Criteria for Model Selection

In general for any set of $p-1$ predictors, 2^{p-1} alternative models can be constructed

This becomes a very difficult talk as p increases

Criteria for Model Selection

We will focus on six criteria for comparing the regression models

$$
-R_p^2
$$

- $R^2_{\alpha,p}$

$$
\mathsf{-} \, C_p
$$

- AIC_p
- SBC_p
- $PRESS_p$

Notation

- We denote the number of potential X variables by $P-1$
- All regression models contain an intercept β_0
- The number of X variables in a subset will be denoted by $p-1$. Thus we have $1 \leq p \leq P$
- We assume that the number of observations exceeds the number of potential parameters

$$
n>P
$$

 R_p^2 or SSE_p

The R_p^2 criterion is equivalent to using the error sum of squares SSE_p as the criterion With the SSE_{p} criterion subsets for which SSE_{p} is small are considered "good" The equivalence follows from

$$
R_p^2 = 1 - \frac{SSE_p}{SSTO}
$$

since $SSTO$ is constant for all possible regression models

 R_p^2 or SSE_p

Note:

The intent in using the R_p^2 criterion is to find the point where adding more X variables is not worthwhile because it leads to a very small increase in R_p^2

 $R^2_{\alpha,p}$ or MSE_p

The adjusted coefficient of multiple determination $R^2_{\alpha,p}$ can be suggested as an alternative of R_p^2

$$
R_{\alpha,p}^2 = 1-\frac{n-1}{n-p}\cdot\frac{SSE_p}{SSTO} = 1-\frac{MSE_p}{\frac{SSTO}{n-1}}
$$

it can be shown that $R^2_{\alpha,p}$ increase if and only if MSE_p decreases since $\frac{3310}{n-1}$ is fixed for any number of predictors SSTO $\overline{n-1}$

Mallows' C_p **Criterion**

The criterion is concerned with the total mean squared error of the n fitted values for each subset regression model

The mean squared error concept involves the total error in each fitted value

$$
{\hat Y}_i - \mu_i
$$

Mallows' C_p **Criterion**

This total error is made up of a bias component and a random error component

Bias component

$$
E\{\hat{Y}_i\} - \mu_i
$$

Random error component

 ${\hat {Y_i}} - E\{\hat{Y_i}\}$

**Mallows'
$$
C_p
$$
 Criterion**

It can be shown that

$$
E\!\left\{\hat{Y}_i-\mu_i\right\}^2=\left(E\{\hat{Y}_i\}-\mu_i\right)^2+\sigma^2\left\{\hat{Y}_i\right\}
$$

therefore, the total mean squared error for all n fitted values is given by

$$
\sum_{i=1}^2 {\{Y_i - \mu_i\}}^2 = \sum_{i=1}^n \left[\left(E\{\hat{Y}_i\} - \mu_i\right)^2 + \sigma^2 \left\{\hat{Y}_i\right\} \right] \\ = \sum_{i=1}^n \left(E\{\hat{Y}_i\} - \mu_i\right)^2 + \sum_{i=1}^n \sigma^2 \left\{\hat{Y}_i\right\}
$$

$$
\textbf{Mallows' } C_p \textbf{ Criterion}
$$

The criterion measure, denoted by Γ_p is simply

$$
\Gamma_p = \frac{1}{\sigma^2} \Biggl[\sum_{i=1}^n \left(E\{\hat{Y}_i\} - \mu_i \right)^2 + \sum_{i=1}^n \sigma^2 \left\{ \hat{Y}_i \right\} \Biggr]
$$

The model which includes all $P-1$ potential X variables is assumed to have been carefully chosen so that $MSE(X_1, \overset{\bullet}{X_2}, \ldots, X_{P-1})$ is an unbiased estimator of σ^2

**Mallows'
$$
C_p
$$
 Criterion**

It can be shown that C_p is an estimator of Γ_p

$$
C_p = \frac{SSE_p}{MSE(X_1, \ldots, X_{P-1})} - (n-2p)
$$

Mallows' C_p **Criterion**

Notes:

When the C_p values for all possible regression models are plotted against p , those models with little bias will tend to fall near the line $C_p = p$

Models with substantial bias will tend to fall considerably above this line

In using the C_p criterion, we seek to identify subsets of X variables for which the C_p value is small **and** the C_p value is near p (Bias of regression model is small)

AIC_p and SBC_p

Alternative criteria that provide penalties for adding predictors are Akaike's Information Criterion (\$AIC_p\$) and Schwarz' Bayesian Criterion (\$SBC_p\$)

We search for models that have small values of AIC_p or SBC_p

$$
\begin{aligned} AIC_p&=n\ln(SSE_p)-n\ln(n)+2p\\ SBC_p&=n\ln(SSE_p)-n\ln(n)+\ln(n)p\end{aligned}
$$

- $n\ln(n)SSE_p$ decreases as p increases

$PRESS_p$ Criterion

The $PRESS_p$ criterion is a measure of how well the use of the fitted values for a subset model can predict the observed responses Y_i

Note:

The press measure differs from SSE in that each fitted value \hat{Y}_i for the $PRESS$ criterion is obtained by deleting the ith case from the data set, estimating the regression function for the subset model from the remaining $n - 1$ cases, and then using the fitted regression function to obtain the predicted value $\hat{Y}_{i(i)}$ for the ith case

$$
PRESS_p = \sum_{i=1}^n \left(Y_i - \hat{Y}_{i(i)}\right)^2
$$

models with small press values are considered good candidate models