Multiple Regression

AU STAT-615

Emil Hvitfeldt

2021-03-017

The least squares and maximum likelihood estimators in **b** are unbiased.

Meaning

$$E\{\mathbf{b}\} = \boldsymbol{\beta}$$

The variance-covariance matrix is given by

$$V\{\mathbf{b}\}_{p imes p} = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$

and

$$S^{2} \{ \mathbf{b} \}_{p \times p} = \mathrm{MSE}(\mathbf{X}^{T} \mathbf{X})^{-1}$$

Interval estimation of β_k

$$rac{b_k - eta_k}{s\{b_k\}} \sim t(n-p)$$

hence the confidence limits for β_k with $1 - \alpha$ confidence are

$$b_k \pm t\left(1-rac{lpha}{2};n-p
ight)\cdot \{b_k\}$$

Test

$$H_0:eta_k=0 \quad ext{against} \quad H_lpha:eta_k
eq 0$$

The test statistic is

$$t^* = rac{b_k}{s\{b_k\}}$$

if
$$|t^*| \leq \displaystyle rac{b_k}{s\{b_k\}}$$
 then we can conclude H_0 else we conclude H_lpha

For given values of X_1, \ldots, X_{p-1} denoted by $X_{h1}, X_{h2}, \ldots, X_{hp-1}$ we denote $E\{Y_h\}$ by

 $E\{Y_h\} = \mathbf{X}_h^T \mathbf{b}$

where

The estimator is unbiased, i.e. $E\{\hat{Y}_h\} = E\{Y_h\}$

and the variance can be stated as follows

$$V\{{\hat{Y}}_h\} = \sigma^2 \mathbf{X}_h^T \cdot \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} \cdot \mathbf{X}_h$$

But we have that

$$\sigma^2 \cdot \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} = V \mathbf{b}$$

so we get

$$V\{{\hat{Y}}_h\} = \mathbf{X}_h^T \cdot V\{\mathbf{b}\}\mathbf{X}_h$$

and

$$s^2\{{\hat{Y}}_h\} = \mathbf{X}_h^T \cdot s^2\{\mathbf{b}\} \cdot \mathbf{X}_h$$

The 1 - alpha confidence limits for $E\{Y_h\}$ are

$${\hat{Y}_h} \pm t\left({1 - rac{lpha}{2};n - p}
ight) \cdot s\{ {\hat{Y}_h}\}$$

Confidence Region for Regression Surface

The $1 - \alpha$ confidence region for entire regression surface is

 ${\hat{Y}_h} \pm W \cdot s\{{\hat{Y}_h}\}$

with

$$W^2 = p \cdot F(1-lpha; p; n-p)$$

Prediction of $Y_{h(new)}$

The 1 - alpha confidence limits for $Y_{h(new)}$ are

$${\hat{Y}_h} \pm t\left({1 - rac{lpha}{2};n - p}
ight) \cdot s\{ {
m pred} \}$$

with

$$egin{aligned} s^2\{ ext{pred}\} &= ext{MSE} + s^2\{\hat{Y}_h\} \ &= MSE + MSE \cdot \mathbf{X}_h^T \Big(\mathbf{X}^T \mathbf{X} \Big)^{-1} \mathbf{X}_h \ &= MSE \left(1 + \mathbf{X}_h^T \Big(\mathbf{X}^T \mathbf{X} \Big)^{-1} \mathbf{X}_h
ight) \end{aligned}$$

Different Decompositions

We have that

 $SSTO = SSR(X_1) + SSE(X_1)$

if X_1 is the variable X(main variable). Now since

 $SSE(X_1) = SSR(X_2|X_1) + SSE(X_1,X_2)$

Then we get

 $SSTO = SSR(X_1) + SSR(X_1|X_2) + SSE(X_1,X_2)$

Different Decompositions

Now since we also have that

 $SSTO = SSR(X_1, X_2) + SSE(X_1, X_2)$

We can combine it with

 $SSTO = SSR(X_1) + SSR(X_1|X_2) + SSE(X_1, X_2)$

that we derived earlier

Different Decompositions

Combing the two gives

 $SSR(X_1, X_2) + SSE(X_1, X_2) = SSR(X_1) + SSR(X_1|X_2) + SSE(X_1, X_2) \ SSR(X_1, X_2) = SSR(X_1) + SSR(X_1|X_2)$

ANOVA table for three predictors

Source of variation	SS	df
Regression	$SSR(X_1,X_2,X_3)$	3 (\$p-1\$)
X_1	$SSR(X_1)$	1
$X_2 \mid X_1$	$SSR(X_2 \mid X_1)$	1
$X_3 \mid X_1, X_2$	$SSR(X_3 \mid X_1, X_2)$	1
Error	$SSE(X_1,X_2,X_3)$	n-4
Total	SSTO	n-1

Uses of Extra Sums of Squares in Tests for regressiom coefficients

When we wish to test whether the term $\beta_k X_k$ can be dropped from a multiple regression model we are interested in

 $egin{aligned} H_0:eta_k=0\ H_lpha:eta_k
eq 0 \end{aligned}$

Example

In the case where we have X_1, X_2, X_3 and we want to test $eta_3 = 0$ vs $eta_3
eq 0$

we can use

$$SSR(X_3|X_1,X_2) = SSE(X_1,X_2) - SSE(X_1,X_2,X_3)$$

Example

Hence we get the test statistic

$$F^* = \frac{SSR(X_3|X_1, X_2)}{1} \div \frac{SSE(X_1, X_2, X_3)}{n-4}$$
$$= \frac{MSR(X_3|X_1, X_2)}{MSE(X_1, X_2, X_3)}$$

which we can think of as a marginal test

When we wish to test whether several terms in the regression model can be dropped at the same time, we can construct a test in a similar way

In the case where we wanted to check if we could remove $\beta_2 X_2$ and $\beta_3 X_3$, we have

 $egin{aligned} H_0:eta_2=eta_3=0\ H_lpha: ext{Not both are zero} \end{aligned}$

Example

Now the test statistic is

$$F^* = \frac{SSR(X_2, X_3 | X_1)}{2} \div \frac{SSE(X_1, X_2, X_3)}{n - 4}$$
$$= \frac{MSR(X_2, X_3 | X_1)}{MSE(X_1, X_2, X_3)}$$

where

 $SSR(X_2, X_3 | X_1) = SSR(X_2 | X_1) + SSR(X_3 | X_1, X_2)$