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Example 1
First order model with two predictor variables

When there are two variables  and , the regression model is

Assuming  we have

The response function is a plane

X1 X2

Yi = β0 + β1Xi1 + β2Xi2 + εi

E{εi} = 0

E{Yi} = β0 + β1Xi1 + β2Xi2
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Example 1

- , y-intercept. If  then  represents the mean response 

-  Indicates change in mean per unit increase in  when  is constant

-  Indicates change in mean per unit increase in  when  is constant

E{Yi} = β0 + β1Xi1 + β2Xi2

β0 X1 = X2 = 0 β0 E{Y }

β1 X1 X2

β2 X2 X1
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Example 2
First order model with more than two predictor variables

For  predictor variables

Or

p − 1

Yi = β0 + β1Xi1 + β2Xi2 + ⋯ + βp−1Xi,p−1 + εi

Yi = β0 +
p−1

∑
k=1

βkXl1 + εi
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Example 2
Assuming  we obtain

Here the response function is a hyperplane

E{εi} = 0

E{Yi} = β0 + β1Xi1 + β2Xi2 + ⋯ + βp−1Xi,p−1

5 / 25



Qualitative predictor variables
For the model

This model encompasses not only quantitative predictor variables but also qualitative

ones such as sex or disability status

For example, let

Yi = β0 + β1Xi1 + β2Xi2 + ⋯ + βp−1Xi,p−1 + εi

X1 = Age of patients

X2 = { 1, patient female
0, patient male

Y = Length of hospital stay
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Qualitative predictor variables
We have

and for male patients

and for female patients

These two response functions are straight lines that are parallel with each other

E{Y } = β0 + β1Xi1 + β2X2

E{Y } = β0 + β1X1

E{Y } = β0 + β1X1 + β2 = (β0 + β2) + β1X1
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Polynomial Regression
Special case of general linear regression model

More on Chapter 8

Yi = β0 + β1Xi + β2X2
i + εi

8 / 25



interaction Effects

The effect of one predictor variable depends on the levels of the other predictor

variables

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

9 / 25



Meaning of Linear in General Linear
Regression Model
We say that a regression model is linear in the parameters when it can be written in

the form

The term linear model refers to the fact that the equation is linear in parameters, it

does not refer to the shape of the response variable

An example of a non-linear regression model

Yi = β0 + β1Xi1 + β2Xi2 + εi

Yi = β0 ⋅ eβ1Xi + εi
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General Linear Regression model in
matrix form
The model

Can be written using matrices as

Yi = β0 + β1Xi1 + β2Xi2 + ⋯ + βp−1Xi,p−1 + εi

Yn×1 = Xn×p ⋅ βp×1 + εn×1
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General Linear Regression model in
matrix form
Where

Yn×1 =

⎡
⎢ ⎢ ⎢ ⎢
⎣

Y1

Y2

⋮
Yn

⎤
⎥ ⎥ ⎥ ⎥
⎦

Xn×P =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 X11 X12 ⋯ X1,p−1

1 X21 X22 ⋯ X2,p−1

⋮ ⋮ ⋮ ⋮
1 Xn1 Xn2 ⋯ Xn,p−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

βp×1 =

⎡
⎢ ⎢ ⎢ ⎢
⎣

β1

β2

⋮
βn

⎤
⎥ ⎥ ⎥ ⎥
⎦

εn×1 =

⎡
⎢ ⎢ ⎢ ⎢
⎣

ε1

ε2

⋮
εn

⎤
⎥ ⎥ ⎥ ⎥
⎦
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General Linear Regression model in
matrix form
For

- , vector of responses

- , Matrix of constants

- , vector of parameters

- , vector of independent normal random variables

Yn×1 = Xn×p ⋅ βp×1 + εn×1

Yn×1

Xn×p

βp×1

εn×1
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Properties

We have that

and

Thus  and 

Yn×1 = Xn×p ⋅ βp×1 + εn×1

E{ε} = 0

V {ε} =

⎡
⎢ ⎢ ⎢ ⎢
⎣

σ2 0 ⋯ 0
0 σ2 ⋯ 0

⋮ ⋮ ⋮
0 0 ⋯ σ2

⎤
⎥ ⎥ ⎥ ⎥
⎦

= σ2I

E{Y}n×1 = Xβ V {Y}n×n = σ2In×n
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Estimation of Regression Coefficients
In the general linear case, we have the following criterion

The vector of least squares estimated coefficients  is denoted by

Q =
n

∑
i=1

(Yi − β0 − β1Xi1 − β2Xi2 − ⋯ − βp−1Xi,p−1)2

b0, b1, . . . , bp−1

b =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

b1

b2

⋮
bp−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦
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Estimation of Regression Coefficients
The least squares normal equations for the general linear regression model are given

by

and the least square estimators are

X
T ⋅ Xb = X

T ⋅ Y

X
T ⋅ X ⋅ b = X

T ⋅ Y

(X
T ⋅ X)−1 ⋅ (X

T ⋅ X) ⋅ b = (X
T ⋅ X)−1 ⋅ X

T ⋅ Y

b = (X
T ⋅ X)−1 ⋅ X

T ⋅ Y
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Fitted values & Residuals

let  and  is written as 

The fitted values are represented by

and

Ŷ =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

Ŷ 1

Ŷ 2

⋮

Ŷ n

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

ei = Yi − Ŷ i e =

⎡
⎢ ⎢ ⎢ ⎢
⎣

e1

e2

⋮
en

⎤
⎥ ⎥ ⎥ ⎥
⎦

Ŷ = Xb

en×1 = Y − Ŷ = Y − Xb
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Fitted values & Residuals
We know that  so get get that

where we substitute 

b = (X
T ⋅ X)−1 ⋅ X

T ⋅ Y

Ŷ = Xb

Ŷ = X ⋅ (X
T ⋅ X)−1 ⋅ X

T ⋅ Y

Ŷ = H ⋅ Y

H = X ⋅ (X
T ⋅ X)−1 ⋅ X

T
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Fitted values & Residuals
Therefore 

and the variance-covariance is

and

e = Y − Ŷ = Y − HY = (I − H) ⋅ Y

V {ε} = σ2 ⋅ (I − H)

s2{ε} = MSE(I − H)
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Analysis of Variancee
df MS

regression SSR

Error SSE

Total SSTO

p − 1 MSR =
SSR

p − 1

n − p MSE =
SSE

n − p

n − 1
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Analysis of Variancee
Where

We have that  so we get

where  of all 1s

SSR = b
T ⋅ X

T ⋅ Y − Y
T ⋅ J ⋅ Y

1
n

b
T ⋅ X

T = Y
T

SSR = Y
T ⋅ Y − Y

T ⋅ J ⋅ Y
1
n

Jn×n
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Analysis of Variancee
And we have that

The expectation of MSE is  as for simple linear regression

The expectation of MSR is  plus a quantity that is non-negative

SSE = e
T ⋅ e = ⋯ = Y

T ⋅ Y − b
T

X
T ⋅ Y

σ2

σ2
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F Test for Regressioon Relation
To test whether there is a regression relation between  and a set of variables 

 we have

We have 

The decision rule to control type 1 error at  is

Y
X1, . . . , Xp−1

H0 : β1 = β2 =. . . = βp−1 = 0
h1 : not all βk(k = 1, . . . , p − 1) equal zero

F ∗ =
MSR

MSE

α

If F ∗ ≤ F(1 − α; p − 1, n − p) conclude H0

If F ∗ > F(1 − α; p − 1, n − p) conclude H1
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Coefficients of multiple determination

Measures the proportionate reduction of total variation in  associated with the use of

the set of  variables 

R2 = = 1 −
SSR

SSTO

SSE

SSTO

Y
X X1, . . . , Xp−1
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Coefficients of multiple determination
Since adding more variables to the regression model can only increase  and never

reduce it because SSE can never become larger with more  variables and SSTO is

always the same for a given set of responses

So we can use another metric, adjusted coefficient of multiple determination

Note: A larger value of  does not necessarily imply that the fitted model is a useful

one.

R2

X

R2
α = 1 − = 1 − ( ) ⋅

SSE

n − p

SSTO

n − 1

n − 1
n − p

SSE

SSTO

R2
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