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Example 1

First order model with two predictor variables
When there are two variables X; and Xs, the regression model is
Yi = Bo + 1 X1 + B2 Xi2 + &
Assuming E{¢;} = 0 we have
E{Y;} = Bo + B1Xi1 + B2 X

The response function is a plane
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Example 1
E{Y;} = Bo + 01X + BaXiz

- Bo, y-intercept. If X; = X = 0 then [y represents the mean response E{Y}
- /71 Indicates change in mean per unit increase in X; when X5 is constant

- 35 Indicates change in mean per unit increase in X, when X is constant
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Example 2

First order model with more than two predictor variables

For p — 1 predictor variables
Y, = Bo+ B1Xi1 + BoXig+ -+ Bpo1 X po1 + €

Or

p—1
Y, =B+ ZBk’Xll + &
=1
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Example 2

Assuming E{e;} = 0 we obtain
E{Y;} = Bo+ 51X + PoXio + -+ - + Bp—1Xip—1

Here the response function is a hyperplane
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Qualitative predictor variables

For the model
Yi=0o+ 51X+ B Xio+ -+ Bp1Xip-1 + €

This model encompasses not only quantitative predictor variables but also qualitative
ones such as sex or disability status

For example, let

X1 = Age of patients

x 1, patient female
2 = :
0, patient male

Y = Length of hospital stay
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Qualitative predictor variables

We have
E{Y} = Bo + B1Xi1 + B2 X
and for male patients
E{Y} = By + p1X1
and for female patients
E{Y} = Bo+ b1 X1+ B2 = (Bo + B2) + 1 Xa

These two response functions are straight lines that are parallel with each other
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Polynomial Regression

Special case of general linear regression model
Y = Bo+ B1X; + B2 X + e

More on Chapter 8
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interaction Effects

Y = Bo + B1Xi1 + B2 Xio + Bs X1 Xio + €4

The effect of one predictor variable depends on the levels of the other predictor
variables
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Meaning of Linear in General Linear
Regression Model

We say that a regression model is linear in the parameters when it can be written in
the form

Y; = Bo + B1Xi1 + B2 Xio + €

The term linear model refers to the fact that the equation is linear in parameters, it
does not refer to the shape of the response variable

An example of a non-linear regression model

Y; = B - "% g
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General Linear Regression model in
matrix form

The model
Yi=00+ 81X+ e Xio+ -+ Bp1Xip-1+ €
Can be written using matrices as

Yx1 = Xpxp - Bpx1 + €nxi
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General Linear Regression model in
matrix form

Where

Yn><1 —

,Bpxl —

anP —

g,

Ba

| B

1 Xy X oo Xipo1
I X9 Xoo -+ Xopg
_1 an Xn2 an—l

e

€2

Enxl = .

e, | 12 /25



General Linear Regression model in
matrix form

For
Ynxl — XnXp ’ ,Bpxl + €nx1

- Y, «1, vector of responses

- X, p, Matrix of constants
D
- Bpx1, vector of parameters

- £,x1, vector of independent normal random variables
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Properties

Ynxl — XnXp ) ,Bpxl + €nx1

We have that
Ele} =0
and
oy O 07
0 oo --- 0
Vie} =1 . . .| = ool
_ 0 0 09 |

Th EYnx =X dVYnxn: Inxn
us B{Y},x1 = XB and V{Y} 7 14 /25



Estimation of Regression Coefficients

In the general linear case, we have the following criterion

Q= Z(Yz — B0 — B1Xa — BaXig — - — Bp1Xip 1)’
i—1

The vector of least squares estimated coetficients by, by, . . .

- by

, by_1 is denoted by

15 /25



Estimation of Regression Coefficients

The least squares normal equations for the general linear regression model are given
by
X" Xb=X"Y

and the least square estimators are

X' X p=Xx"Y
X' x)t.xXt'x)-b=(xr'.x)t.x".
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Fitted values & Residuals

Y1 €1 ]

“ 1}2 N €2

let Y = . ande;, =Y; — Y, is writtenase = | _
_ Yn . -n ]

The fitted values are represented by

and

A

e,.1=Y-Y=Y—Xb
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Fitted values & Residuals

We know that b = (X? - X))~ . X* . Y so get get that

I
P4

b
X xr.x)t.xt.v
H-Y

<y s
|

where we substitute H = X - (X' - X)~ 1. X’
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Fitted values & Residuals

A

Thereforee= Y -Y=Y-HY=(I-H)-Y
and the variance-covariance is

V{ie} =0 (I-H)
and

s*{e} = MSE(I — H)
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Analysis of Variancee

df MS
SSR
regression SSR p—1 MSR = 1
SSE
Error SSE n—p MSE =
n—p

Total SSTO n—1
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Analysis of Variancee

Where

1
SSR=b! . X' . vy - -Y'.J.Y

n
We have that b” - XT = Y7 so we get

SSR:YT-Y—iYT.J-Y

n

where J,,,, of all 1s
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Analysis of Variancee

And we have that
SSE=¢" e=--.=Y' - Y-b'X".Y
The expectation of MSE is o2 as for simple linear regression

The expectation of MSR is o plus a quantity that is non-negative
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F Test for Regressioon Relation

To test whether there is a regression relation between Y and a set of variables
X1,...,Xp-1 we have

H()Iﬂlzﬂz :...:ﬂp_l =0
hi :not all Bx(k=1,...,p— 1) equal zero

MSR

F*= — —
We have VSE

The decision rule to control type 1 error at a is
IfF*<F(1—a;p—1,n—p) conclude Hy

If F*> F(1 —a;p—1,n— p) conclude H;
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Coefficients of multiple determination

R SSR L SSE
-~ SSTO SSTO

Measures the proportionate reduction of total variation in Y associated with the use of
the set of X variables Xi,..., X, 1
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Coefficients of multiple determination

Since adding more variables to the regression model can only increase R? and never
reduce it because SSE can never become larger with more X variables and SSTO is
always the same for a given set of responses

So we can use another metric, adjusted coefficient of multiple determination

SSE
o , mn—p - [(n-1 .SSE
Ro =1 SSTO =1 (n—p) SSTO
n—1

Note: A larger value of R? does not necessarily imply that the fitted model is a useful
one.
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