Multiple Regression 1

AU STAT-615

Emil Hvitfeldt

2021-03-03

First order model with two predictor variables

When there are two variables X_1 and X_2 , the regression model is

$$
Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i
$$

Assuming $E\{\varepsilon_i\} = 0$ we have

$$
E\{Y_i\}=\beta_0+\beta_1X_{i1}+\beta_2X_{i2}
$$

The response function is a plane

 $E{Y_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}$

- β_0 , y-intercept. If $X_1 = X_2 = 0$ then β_0 represents the mean response $E\{Y\}$
- β_1 Indicates change in mean per unit increase in X_1 when X_2 is constant
- β_2 Indicates change in mean per unit increase in X_2 when X_1 is constant

First order model with more than two predictor variables

For $p-1$ predictor variables

$$
Y_i=\beta_0+\beta_1X_{i1}+\beta_2X_{i2}+\cdots+\beta_{p-1}X_{i,p-1}+\varepsilon_i
$$

Or

$$
Y_i = \beta_0 + \sum_{k=1}^{p-1} \beta_k X_{l1} + \varepsilon_i
$$

Assuming $E\{\varepsilon_i\} = 0$ we obtain

$$
E\{Y_i\} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1}
$$

Here the response function is a hyperplane

Qualitative predictor variables

For the model

$$
Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1} + \varepsilon_i
$$

This model encompasses not only quantitative predictor variables but also qualitative ones such as sex or disability status

For example, let

 X_1 = Age of patients $X_2 = \Big\{$ 1, patient female 0, patient male $Y =$ Length of hospital stay

Qualitative predictor variables

We have

$$
E\{Y\}=\beta_0+\beta_1X_{i1}+\beta_2X_2
$$

and for male patients

$$
E\{Y\}=\beta_0+\beta_1X_1
$$

and for female patients

$$
E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 = (\beta_0 + \beta_2) + \beta_1 X_1
$$

These two response functions are straight lines that are parallel with each other

Polynomial Regression

Special case of general linear regression model

$$
Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i
$$

More on Chapter 8

interaction Effects

$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$

The effect of one predictor variable depends on the levels of the other predictor variables

Meaning of Linear in General Linear Regression Model

We say that a regression model is linear in the parameters when it can be written in the form

$$
Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i
$$

The term linear model refers to the fact that the equation is linear in parameters, it does not refer to the shape of the response variable

An example of a non-linear regression model

$$
Y_i = \beta_0 \cdot e^{\beta_1 X_i} + \varepsilon_i
$$

General Linear Regression model in matrix form

The model

$$
Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1} + \varepsilon_i
$$

Can be written using matrices as

$$
\mathbf{Y}_{n\times 1}=\mathbf{X}_{n\times p}\cdot\boldsymbol{\beta}_{p\times 1}+\boldsymbol{\varepsilon}_{n\times 1}
$$

General Linear Regression model in matrix form

Where

$$
\mathbf{Y}_{n\times 1} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \qquad \mathbf{X}_{n\times P} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}
$$

$$
\pmb{\beta}_{p\times 1} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \qquad \pmb{\varepsilon}_{n\times 1} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}
$$

General Linear Regression model in matrix form

For

$$
\mathbf{Y}_{n\times 1}=\mathbf{X}_{n\times p}\cdot\boldsymbol{\beta}_{p\times 1}+\boldsymbol{\varepsilon}_{n\times 1}
$$

- $\mathbf{Y}_{n\times 1}$, vector of responses
- $\mathbf{X}_{n\times p}$, Matrix of constants
- $\boldsymbol{\beta}_{p\times 1}$, vector of parameters
- $-\boldsymbol{\varepsilon}_{n\times 1}$, vector of independent normal random variables

Properties

$$
\mathbf{Y}_{n\times 1}=\mathbf{X}_{n\times p}\cdot\boldsymbol{\beta}_{p\times 1}+\boldsymbol{\varepsilon}_{n\times 1}
$$

We have that

 $E\{\boldsymbol{\varepsilon}\}=\mathbf{0}$

and

$$
V\{\boldsymbol{\varepsilon}\} = \left[\begin{matrix}\sigma_2 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sigma_2\end{matrix} \right] = \sigma_2 \mathbf{I}
$$

Thus $E\{\mathbf{Y}\}_{n\times 1} = \mathbf{X}\boldsymbol{\beta}$ and $V\{\mathbf{Y}\}_{n\times n} = \sigma_2 \mathbf{I}_{n\times n}$

14 / 25

Estimation of Regression Coefficients

In the general linear case, we have the following criterion

$$
Q=\sum_{i=1}^n(Y_i-\beta_0-\beta_1X_{i1}-\beta_2X_{i2}-\cdots-\beta_{p-1}X_{i,p-1})^2
$$

The vector of least squares estimated coefficients $b_0, b_1, \ldots, b_{p-1}$ is denoted by

$$
\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{p-1} \end{bmatrix}
$$

Estimation of Regression Coefficients

The least squares normal equations for the general linear regression model are given by

$$
\textbf{X}^T \cdot \textbf{X} \textbf{b} = \textbf{X}^T \cdot \textbf{Y}
$$

and the least square estimators are

$$
\mathbf{X}^T \cdot \mathbf{X} \cdot \mathbf{b} = \mathbf{X}^T \cdot \mathbf{Y}
$$

$$
(\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot (\mathbf{X}^T \cdot \mathbf{X}) \cdot \mathbf{b} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{Y}
$$

$$
\mathbf{b} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{Y}
$$

Fitted values & Residuals

$$
\text{let } \hat{\mathbf{Y}} = \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix} \text{ and } e_i = Y_i - \hat{Y}_i \text{ is written as } \mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}
$$

The fitted values are represented by

$$
\mathbf{\hat{Y}} = \mathbf{X} \mathbf{b}
$$

and

$$
\mathbf{e}_{n\times 1} = \mathbf{Y} - \mathbf{\hat{Y}} = \mathbf{Y} - \mathbf{X}\mathbf{b}
$$

Fitted values & Residuals

We know that $\mathbf{b} = (\mathbf{X}^T\cdot\mathbf{X})^{-1}\cdot\mathbf{X}^T\cdot\mathbf{Y}$ so get get that

$$
\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}
$$
\n
$$
\hat{\mathbf{Y}} = \mathbf{X} \cdot (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{Y}
$$
\n
$$
\hat{\mathbf{Y}} = \mathbf{H} \cdot \mathbf{Y}
$$

where we substitute $\mathbf{H} = \mathbf{X} \cdot (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T$

Fitted values & Residuals

Therefore $\mathbf{e} = \mathbf{Y} - \mathbf{\hat{Y}} = \mathbf{Y} - \mathbf{H}\mathbf{Y} = (\mathbf{I} - \mathbf{H}) \cdot \mathbf{Y}$

and the variance-covariance is

$$
V\{\boldsymbol{\varepsilon}\} = \sigma^2\cdot(\mathbf{I}-\mathbf{H})
$$

and

$$
s^2\{\boldsymbol{\varepsilon}\}=MSE(\mathbf{I}-\mathbf{H})
$$

Analysis of Variancee

Analysis of Variancee

Where

$$
SSR = \mathbf{b}^T \cdot \mathbf{X}^T \cdot \mathbf{Y} - \frac{1}{n} \mathbf{Y}^T \cdot \mathbf{J} \cdot \mathbf{Y}
$$

We have that $\mathbf{b}^T\cdot\mathbf{X}^T=\mathbf{Y}^T$ so we get

$$
SSR = \mathbf{Y}^T \cdot \mathbf{Y} - \frac{1}{n} \mathbf{Y}^T \cdot \mathbf{J} \cdot \mathbf{Y}
$$

where $\mathbf{J}_{n\times n}$ of all 1s

Analysis of Variancee

And we have that

$$
SSE = \mathbf{e}^T \cdot \mathbf{e} = \cdots = \mathbf{Y}^T \cdot \mathbf{Y} - \mathbf{b}^T \mathbf{X}^T \cdot \mathbf{Y}
$$

The expectation of MSE is σ^2 as for simple linear regression

The expectation of MSR is σ^2 plus a quantity that is non-negative

F Test for Regressioon Relation

To test whether there is a regression relation between Y and a set of variables X_1, \ldots, X_{p-1} we have

$$
H_0: \beta_1=\beta_2=\ldots=\beta_{p-1}=0\\ h_1: \text{not all } \beta_k (k=1,\ldots,p-1) \text{ equal zero}
$$

We have $F^* =$ MSR MSE

The decision rule to control type 1 error at α is

$$
\begin{aligned} \text{If } &F^* \leq F(1-\alpha; p-1, n-p) \text{ conclude } H_0 \\ \text{If } &F^* > F(1-\alpha; p-1, n-p) \text{ conclude } H_1 \end{aligned}
$$

Coefficients of multiple determination

$$
R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}
$$

Measures the proportionate reduction of total variation in Y associated with the use of the set of X variables X_1, \ldots, X_{p-1}

Coefficients of multiple determination

Since adding more variables to the regression model can only increase R^2 and never reduce it because SSE can never become larger with more X variables and SSTO is always the same for a given set of responses

So we can use another metric, adjusted coefficient of multiple determination

$$
R_{\alpha}^2 = 1 - \frac{\dfrac{SSE}{n-p}}{\dfrac{SSTO}{n-1}} = 1 - \left(\dfrac{n-1}{n-p} \right) \cdot \dfrac{SSE}{SSTO}
$$

Note: A larger value of R^2 does not necessarily imply that the fitted model is a useful one.