Inference

AU STAT-615

Emil Hvitfeldt

2021-02-10

Normal error regression model

For this lecture, we assume that the **normal error regression model** is applicable

$$
Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i
$$

where

- β_0 and β_1 are parameters
- X_i are known constants
- ε_i are independent $N(0,\sigma^2)$

Prediction Interval for New Observations

Objective:

Prediction of new observation Y corresponding to a given level X of the predictor variable

The new observation on Y to be predicted is viewed as the result of a new trial independent of the trials on which the regression analysis is based.

Notation

Let X_h be the level of X for new and new observation on Y as $Y_{h(new)}$

Goal:

Predict an individual outcome drawn from the distribution of Y

Prediction Interval for New Observations

In the previous case, we were estimating $E\{Y_h\}$ by $\hat{\overline{Y}_h}$

Our best guess for a new observation is still \hat{Y}_h . The estimated mean is still the best prediction we can make

The difference is in the amount of variability

$$
V\{Y_{h(new)} - \hat{Y}_h\} = V\{Y_{h(new)}\} + V\{\hat{Y}_h\} = \sigma^2 + \sigma^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right]
$$

Amount of variability

This means that we have

$$
V\{Y_{h(new)} - \hat{Y}_h\} = \sigma^2 \left[1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]
$$

Which we can estimate with $\sigma^2 = MSE$

$$
{V\{Y_{h(new)}-\hat{Y}_{h}\}}=MSE\left[1+\frac{1}{n}+\frac{(X_{h}-\bar{X})^{2}}{\sum(X_{i}-\bar{X})^{2}}\right]
$$

Mean response at X_h

We want to estimate $E\{Y_h\}$

The point estimate is \hat{Y}_h and the variance is

$$
V\{\hat{Y}_h\}=MSE\left[\frac{1}{n}+\frac{(X_h-\bar{X})^2}{\sum(X_i-\bar{X})^2}\right]
$$

The $1 - alpha$ percent confidence interval will be

$$
{\hat Y}_h \pm t \left(1 - \frac{\alpha}{2}; n-2 \right) \cdot s\{ {\hat Y}_h \}
$$

New observation at X_h

We want to predict $Yh(new)$ drawn from \overline{Y}

$$
{V\{Y_{h(new)}-\hat{Y}_{h}\}=V\{Y_{h(new)}\}+V\{\hat{Y}_{h}\}}
$$

The $1 - alpha$ percent confidence interval will be

$$
{\hat Y}_h \pm t \left(1 - \frac{\alpha}{2}; n-2 \right) \cdot s\{ Y_{h(new)} - {\hat Y}_h \}
$$

Note: This will be wider than the mean response CI

IT accounts for both the uncertainty in knowing the value of the population mean + data scattering

Goal:

Obtain a confidence band for the entire regression line $E\{Y\} = \beta_0 + \beta_1 X$

Why?

It helps us to determine the appropriation of a fitted regression function

We get

 ${\hat{Y}_h} \pm Ws\{\hat{Y}_h\}$

where $W^2=2F(1-\alpha;2,n-2)$

In the case of a simple linear regression, it is equivalent to another test, the F test for the significance of the regression

This equivalence is true only for simple linear regression

Let's start with $Y_i-\bar{Y}$ which measures the deviation of an observation from the sample mean

We have that

$$
Y_i-\bar{Y}=Y_i-\hat{Y_i}+\hat{Y_i}-\bar{Y}
$$

- Total deviation
- Deviation around fitted regression line
- Deviation of fitted regression value around mean

It can be shown that the sums of these squared deviations have the same relationship

$$
\sum (Y_i-\bar{Y})^2=\sum (Y_i-\hat{Y}_i)^2+\sum (\hat{Y}_i-\bar{Y})^2
$$

ANOVA Table

We have that $p=2$

ANOVA Table

Why $p-1$?

This corresponds to the fact that we specify a line by two points

We will prove this in multiple regression

Significance of the regression test

Idea:

Comparison of MSR and MSE is useful for testing whether or not $\beta_1 = 0$. If MSE and MSE are of the same order of magnitude, this would suggest that $\beta_1=0$

If MSR is substantially greater than MSE, this would suggest that $\beta_1\neq 0$

Significance of the regression test

We note that

 $E\{MSE\}=\sigma^2$

and

$$
E\{MSR\}=\sigma^2+\beta_1^2\sum(X_i-\bar{X})^2
$$

if $\beta_1 = 0$ then we get that $E\{MSE\} = E\{MSR\}$

So it makes sense to compare them by

$$
F^*=\frac{MSR}{MSE}
$$

Significance of the regression test

We can set up the hypotheses

$$
H_0: \beta_1 = 0 \qquad H_\alpha: \beta_1 \neq 0
$$

If $F^* \leq F(1-\alpha;1,n-2)$ when we conclude H_0

If $F^*>F(1-\alpha;1,n-2)$ when we conclude H_α

Note: F^* is always positive

The time it takes to transmit a file always depends on the file size. Suppose you transmitted 30 files with an average size of 126 Kbytes and a standard deviation of 35 Kbytes.

The average transmittance time was 0.04 seconds with a standard deviation of 0.01 seconds. The correlation coefficient between the time and size was 0.86.

In other words, we are given that $n = 30$, $s\{X\} = 35$, $s\{Y\} = 0.01$, and $r = 0.86$.

We are given that $n = 30$, $s\{X\} = 35$, $s\{Y\} = 0.01$, and $r = 0.86$

a) Compute the total, regression, and error sum of squares.

$$
SST = \sum_{i=1}^n (Y_i - \bar{Y})^2 = (n-1) \cdot V\{Y\} = 29 \cdot 0.01^2 = 0.0029
$$

We also have that

$$
r^2 = \frac{SSR}{SST}
$$

thus

$$
SSR = r^2 \cdot SST = 0.86^2 \cdot 0.0029 = 0.00214
$$

and

$$
SSE = SST - SSR = 0.00076
$$

b) Compute the ANOVA Table

c) Use the F-statistic to test the significance of our regression model that related transmission time to the size of the file. State H_0 and H_1 and draw conclusion for $1 - \alpha = 0.95$.

$$
H_0: \beta_1 = 0 \qquad H_\alpha: \beta_1 \neq 0
$$

We have
$$
F^* = 79.3
$$
, and $F(1 - \alpha; 1, 28) = 4.17$

we have that $F^*>F(1-\alpha;1,28)$

so we reject H_0 . The slope is significant. There is evidence of a linear relation between X and Y

d) Coefficient of determination

$$
R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}
$$

The coefficient of determination is interpreted as the proportion of observed variation in Y that can be explained by the simple linear regression model

Here
$$
R^2 = \frac{0.00214}{0.0029} = 0.738
$$

It means that 73.8% of the total variation of transmission times is explained solely by the file size