Inference

AU STAT-615

Emil Hvitfeldt

2021-02-03

Normal error regression model

For this lecture, we assume that the **normal error regression model** is applicable

$$
Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i
$$

where

- β_0 and β_1 are parameters
- X_i are known constants
- ε_i are independent $N(0,\sigma^2)$

Inference concerning $β_1$

Example:

Study relationship between sales Y and advertising expenditures X

We are generally interested in getting an estimate of β_1

Knowledge of β_1 provides information as to how many additional sales, on average, are generated by an additional amount of advertising expenditure

If any

Tests

Sometimes we set up tests concerning β_1 that we want to answer

 $H_0: \beta_1 = 0$ $H_1 : \beta_1 \neq 0$

When $\beta_1 = 0$ then there is no linear association between Y and X.

Sampling distribution of β_1

Before discussing the inference concerning β_1 we need the sampling distribution of b_1

where b_1 is the point estimate of $\beta_1.$

Sampling distribution of β_1

The sampling distribution of β_1 refers to the different values of b_1 that would be obtained with repeated sampling.

 b_1 is a linear combination of Y_i and some constants

 Y_i is normally distributed

This leads to

 b_1 being normally distributed

Sampling distribution of β_1

We saw last week (and in 1.10a) that the point estimate of b_1 is:

$$
b_1 = \frac{\sum\limits_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sum\limits_{i=1}^{n}(X_i - \bar{X})^2}
$$

For a normal error regression we get

$$
E\{b_1\} = \beta_1 \text{ and } V\{b_1\} = \frac{\sigma^2}{\sum\limits_{i=1}^{n}(X_i - \bar{X})^2}
$$

Normality of b_1

Claim:

 b_1 is a linear combination of Y_i

Thus since Y_i are independently normally distributed and that a linear combination of independent normal random variables are normally distributed, then we have that b_1 is also normally distributed

We now need to show that b_1 is a linear combination of Y_i .

We start with

$$
b_1 = \frac{\sum\limits_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sum\limits_{i=1}^{n}(X_i - \bar{X})^2}
$$

it follows that

$$
\sum_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y}) = \sum_{i=1}^n (X_i-\bar{X})Y_i - \sum_{i=1}^n (X_i-\bar{X})\bar{Y} \\ = \sum_{i=1}^n (X_i-\bar{X})Y_i
$$

Normality of b_1

We finally get

$$
b_1 = \frac{\sum\limits_{i=1}^{n}(X_i - \bar{X})Y_i}{\sum\limits_{i=1}^{n}(X_i - \bar{X})^2}
$$

thus
$$
b_1 = \sum_{i=1}^n k_i Y_i
$$
 where $k_i = \frac{X_i - \bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2}$

Mean

We can start with

$$
E\{b_1\} = E\left\{\sum_{i=1}^n k_i Y_i\right\} = \sum_{i=1}^n k_i E\{Y_i\} = \sum_{i=1}^n k_i (\beta_0 + \beta_1 X_i) \\ = \beta_0 \sum_{i=1}^n k_i + \beta_1 \sum_{i=1}^n k_i X_i = \beta_1
$$

only if $\sum k_i=0$ and $\sum k_iX_i=1$. \boldsymbol{n} \sum $\sum_{i=1}$ $k_i = 0$ \boldsymbol{n} \sum $\sum_{i=1}$ $k_iX_i=1.$

Check if $\sum_{i=1}^{n} k_i = 0$:

$$
\begin{aligned} \sum_{i=1}^n k_i &= \sum_{i=1}^n \frac{X_i - \bar{X}}{(X_i - \bar{X})^2} \\ &= \sum_{i=1}^n \frac{1}{(X_i - \bar{X})^2} \cdot \sum_{i=1}^n (X_i - \bar{X}) \\ &= \sum_{i=1}^n \frac{1}{(X_i - \bar{X})^2} \cdot 0 = 0 \end{aligned}
$$

Check if $\sum k_i X_i = 1$: \overline{n} \sum $\sum_{i=1}$ $k_iX_i=1$:

$$
\sum_{i=1}^n k_i X_i = \sum_{i=1}^n \frac{X_i - \bar{X}}{(X_i - \bar{X})^2} X_i \\ = \sum_{i=1}^n \frac{1}{(X_i - \bar{X})^2} \cdot \sum_{i=1}^n (X_i - \bar{X}) X_i
$$

Check if
$$
\sum_{i=1}^{n} k_i X_i = 1
$$
:

$$
\sum_{i=1}^n k_i X_i = \sum_{i=1}^n \frac{X_i - \bar{X}}{(X_i - \bar{X})^2} X_i \\ = \frac{1}{\sum\limits_{i=1}^n (X_i - \bar{X})^2} \cdot \sum_{i=1}^n (X_i - \bar{X}) X_i
$$

$$
\hbox{if }\sum_{i=1}^n (X_i-\bar{X})^2=\sum_{i=1}^n (X_i-\bar{X})X_i \hbox{ then } \sum_{i=1}^n k_iX_i=1
$$

check if if
$$
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \bar{X})X_i
$$

 \boldsymbol{n}

$$
\begin{aligned} \sum_{i=1}^n (X_i - \bar{X})^2 &= \sum_{i=1}^n (X_i^2 - 2 X_i \bar{X} + \bar{X}^2) \\ &= \sum_{i=1}^n X_i^2 - 2 \bar{X} \sum_{i=1}^n X_i + n \bar{X} \bar{X} \\ &= \sum_{i=1}^n X_i^2 - 2 \bar{X} \sum_{i=1}^n X_i + n \bar{X} \frac{\sum X_i}{n} \\ &= \sum_{i=1}^n X_i^2 - \bar{X} \sum_{i=1}^n X_i \\ &= \sum_{i=1}^n (X_i - \bar{X}) X_i \end{aligned}
$$

15 / 37

Variance of b_1

$$
V\{b_1\} = V\left\{\sum_{i=1}^n k_i Y_i\right\} = \sum_{i=1}^n k_i^2 V\left\{Y_i\right\} = \sum_{i=1}^n k_i^2 \cdot \sigma^2
$$

$$
= \sigma^2 \sum_{i=1}^n k_i^2 = \sigma^2 \frac{1}{\sum\limits_{i=1}^n (X_i - \bar{X})^2}
$$

Variance of b_1

$$
\begin{aligned} \sum_{i=1}^n k_i^2 &= \sum_{i=1}^n \left[\frac{X_i - \bar{X}}{(X_i - \bar{X})^2} \right]^2 \\ &= \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\left[(X_i - \bar{X})^2 \right]^2} \\ &= \frac{1}{\left[\sum\limits_{i=1}^n (X_i - \bar{X})^2 \right]^2} \cdot \sum_{i=1}^n (X_i - \bar{X})^2 \\ &= \frac{1}{\sum\limits_{i=1}^n (X_i - \bar{X})^2} \end{aligned}
$$

17 / 37

Estimated Variance

We can now estimate the variance of the sampling distribution of b_1

$$
V\{b_1\} = \frac{\sigma^2}{\sum\limits_{i=1}^{n}(X_i - \bar{X})^2}
$$

we can replace the parameter σ^2 with MSE which we know is the unbiased estimator of σ^2 .

$$
s^2\{b_1\} = \frac{MSE}{\sum\limits_{i=1}^{n}(X_i - \bar{X})^2}
$$

Review of related distributions

Let Y be a random variable that follows a normal distribution with $E\{Y\} = \mu$ and $V{Y} = \sigma^2$

- The standard normal random is
$$
Z = \frac{Y - \mu}{\sigma} \rightarrow Z \sim N(0, 1)
$$

- Let Y_1, Y_2, \ldots, Y_n be independent normal, then we have that $a_1Y_1 + a_2Y_2 + \cdots + a_nY_n$ is normally distributed with mean $\sum a_i E\{Y_i\}$ and variance $\sum a_i^2$ ${}^2_iV\{Y_i\}$

Review of related distributions

- Let Z_1, Z_2, \ldots, Z_v be independent standard normal. A **chi-square** random variable is defined as

$$
\chi^2(v) = Z_1^2 + Z_2^2 + \cdots + Z_v^2
$$

where v is called the degrees of freedom (df)

and we have that $E\{\chi^2(v)\}=v$

Review of related distributions

- For Z and $\chi^2(v)$ we can define the t distribution as

$$
t(v)=\frac{Z}{\left[\frac{\chi^2(v)}{v}\right]^{1/2}}
$$

with mean $E\{t(v)\}=0$

Interval estimation

for interval estimation, we need the t-distribution

If we let Y_1, \ldots, Y_n observations of $Y \sim n(0, 1)$

then we get with

$$
\bar{Y}=\frac{\sum X_i}{n}\quad\text{and}\quad s=\left[\frac{\sum(Y_i-\bar{Y})^2}{n-1}\right]^{1/2}\quad\text{and}\quad s\{\bar{Y}\}=\frac{s}{\sqrt{n}}
$$

We have that $\frac{1}{\sqrt{15}}$ is t-distributed with n-1 degrees of freedom. $\bar{Y}-\mu$ $\overline{s\{\bar{Y}\}}$

Interval estimation

the confidence limits for μ with confidence $1 - \alpha$ are

$$
\bar Y\pm t\left(1-\frac{\alpha}{2};n-1\right)s\{\bar Y\}
$$

We have to similarly work for the confidence interval for β_1 .

We need t find the distribution of $b_1 - \beta_1$ $\overline{s\{b_1\}}$

Like previously if Y_i come form the same normal population, then $\frac{1}{\sqrt{|\nabla \cdot|^2}}$ follows a t distribution with $n - 1$ degrees of freedom $\bar{Y}-\mu$ $\overline{s\{\bar{Y}\}}$

The degrees of freedom is $n - 1$ because only one parameter is needed to be estimated

for the regression model, we need to estimate two parameters, thus we need $df = n - 2$

In addition b_1 is a linear combination of Y_i therefore $\frac{1}{\sqrt{2}}$ is t distributed with $\frac{1}{\sqrt{2}}$ degrees of freedom $b_1 - \beta_1$ $\overline{s\{b_1\}}$ $n-2$

We note that the confidence interval for \bar{Y} and b_1 are very similar

$$
\bar{Y}\pm t\left(1-\frac{\alpha}{2};n-1\right)s\{\bar{Y}\}\\\\ b_{1}\pm t\left(1-\frac{\alpha}{2};n-2\right)s\{b_{1}\}
$$

Tests concerning β_1

Test statistics (TS) for testing means often takes the form

$$
TS = \frac{EST - HYP}{SE}
$$

- estimate for parameter
- hypothesized value of parameter
- standard error

Tests concerning β_1

So for

 H_0 : $\beta_1 = \beta_{10}$ H_1 : $\beta_1 \neq \beta_{10}$

We use test statistic

$$
t=\frac{b_1-\beta_{10}}{\sqrt{s^2\{b_1\}}}=\frac{b_1-\beta_{10}}{s\{b_1\}}
$$

where t is t-distributed with $n-2$ degrees of freedom and $s^2\{b_1\} = \frac{MSE}{\sum_{i}K_{i}K_{i}}$ $\overline{\sum (X_i - \bar{X})^2}$

Inference concerning $β_0$

This is a more limited scope since not all models are in scope when $X=0$

Recall that $b_0 = \bar{Y} - b_1 \bar{X}$ and

$$
E\{b_0\}=\beta_0\quad\text{and}\quad V\{b_0\}=\sigma^2\left[\frac{1}{n}+\frac{\bar{X}^2}{\sum(X_i-\bar{X})^2}\right]
$$

We can get an estimator of $V\{b_0\}$ by replacing σ^2 with MSE

$$
s^2\{b_0\}=MSE\left[\frac{1}{n}+\frac{\bar{X}^2}{\sum (X_i-\bar{X})^2}\right]
$$

Sampling distribution of
$$
(b_0 - \beta_0)/s\{b_0\}
$$

The sampling distribution of $\frac{100 - 100}{(1 - 1)}$ can be be set up in a similar fashion to how the sampling distribution of $\frac{1}{\sqrt{1-\frac{1}{n}}}$ was set up. $(b_0 - \beta_0)$ $\overline{s\{b_0\}}$ $(b_1 - \beta_1)$ $\overline{s\{b_1\}}$

We have that
$$
\frac{(b_0 - \beta_0)}{s\{b_0\}}
$$
 is t-distributed with $n - 2$ degrees of freedom

The confidence interval for β_0 is similarly set up in the same way as β_1 and they are

$$
b_0\pm t(1-\frac{\alpha}{2};n-2)s\{b_0\}
$$

Hypothesis tests

For

$$
H_0: \beta_0 = 0
$$

$$
H_1: \beta_0 \neq 0
$$

the test statistic is

$$
t=\dfrac{b_0-\beta_0}{\sqrt{MSE\left[\dfrac{1}{n}+\dfrac{\bar{X}^2}{\sum(X_i-\bar{X})^2}\right]}}
$$

Interval estimation of $E{Y_h}$

Let X_h denote the level of X for which we wish to estimate the mean response

The point estimator \hat{Y}_h of $E\{Y_h\}$ is given by

 ${\hat{Y}_h} = b_0 + b_1X_h$

Normality

The normality of the sampling distribution of ${\hat{Y}}_h$ follows directly from the fact that ${\hat{Y}}_h$ is a linear combination of the observation Y_i .

Mean

We have

$$
E\{\hat{Y}_h\} = E\{b_0 + b_1 X_h\} = b_0 + b_1 X_h
$$

since \hat{Y}_h is a unbiased estimate of $E\{Y_h\}$

Variance

$$
V\{\hat{Y}_h\} = \sigma_2\left[\frac{1}{n} + \frac{(X_h-\bar{X})^2}{\sum(X_i-\bar{X})^2}\right]
$$

Note: The variability of the sampling distribution of \hat{Y}_h is affected by how far X_h is from \bar{X} since we have $(X_h - \bar{X})^2$

Confidence interval

We define

$$
\frac{\hat{Y}_h - E\{Y_h\}}{s\{\hat{Y}_h\}}
$$

which is t-distributed with $n - 2$ degrees of freedom, and the corresponding confidence interval is

$$
{\hat Y}_h \pm t \left(1-\frac{\alpha}{2}; n-2 \right)s\{{\hat Y}_h\}
$$