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Normal error regression model
For this lecture, we assume that the normal error regression model is applicable

where

-  and  are parameters

-  are known constants

-  are independent 

Yi = β0 + β1Xi + εi

β0 β1

Xi

εi N(0,σ2)
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Inference concerning 
Example:

Study relationship between sales  and advertising expenditures 

We are generally interested in getting an estimate of 

Knowledge of  provides information as to how many additional sales, on average, are

generated by an additional amount of advertising expenditure

If any

β1

Y X

β1

β1
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Tests
Sometimes we set up tests concerning  that we want to answer

When  then there is no linear association between  and .

β1

H0 : β1 = 0

H1 : β1 ≠ 0

β1 = 0 Y X
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Sampling distribution of 
Before discussing the inference concerning  we need the sampling distribution of 

where  is the point estimate of .

β1

β1 b1

b1 β1

5 / 37



Sampling distribution of 
The sampling distribution of  refers to the different values of  that would be

obtained with repeated sampling.

 is a linear combination of  and some constants

 is normally distributed

This leads to

 being normally distributed

β1

β1 b1

b1 Yi

Yi

b1
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Sampling distribution of 
We saw last week (and in 1.10a) that the point estimate of  is:

For a normal error regression we get

 and 

β1

b1

b1 =

n

∑
i=1

(Xi − X̄)(Yi − Ȳ )

n

∑
i=1

(Xi − X̄)2

E{b1} = β1 V {b1} =
σ2

n

∑
i=1

(Xi − X̄)2
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Normality of 
Claim:

 is a linear combination of 

Thus since  are independently normally distributed and that a linear combination of

independent normal random variables are normally distributed, then we have that  is

also normally distributed

b1

b1 Yi

Yi
b1
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We now need to show that  is a linear combination of .

We start with

it follows that

b1 Yi

b1 =

n

∑
i=1

(Xi − X̄)(Yi − Ȳ )

n

∑
i=1

(Xi − X̄)2

n

∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
n

∑
i=1

(Xi − X̄)Yi −
n

∑
i=1

(Xi − X̄)Ȳ

=
n

∑
i=1

(Xi − X̄)Yi
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Normality of 
We finally get

thus  where 

b1

b1 =

n

∑
i=1

(Xi − X̄)Yi

n

∑
i=1

(Xi − X̄)2

b1 =
n

∑
i=1

kiYi ki =
Xi − X̄

n

∑
i=1

(Xi − X̄)2
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Mean
We can start with

only if  and .

E{b1} = E {
n

∑
i=1

kiYi} =
n

∑
i=1

kiE{Yi} =
n

∑
i=1

ki(β0 + β1Xi)

= β0

n

∑
i=1

ki + β1

n

∑
i=1

kiXi = β1

n

∑
i=1

ki = 0
n

∑
i=1

kiXi = 1

11 / 37



Check if :

n

∑
i=1

ki = 0

n

∑
i=1

ki =
n

∑
i=1

=
n

∑
i=1

⋅
n

∑
i=1

(Xi − X̄)

=
n

∑
i=1

⋅ 0 = 0

Xi − X̄

(Xi − X̄)2

1

(Xi − X̄)2

1

(Xi − X̄)2
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Check if :

n

∑
i=1

kiXi = 1

n

∑
i=1

kiXi =
n

∑
i=1

Xi

=
n

∑
i=1

⋅
n

∑
i=1

(Xi − X̄)Xi

Xi − X̄

(Xi − X̄)2

1

(Xi − X̄)2
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Check if :

if  then 

n

∑
i=1

kiXi = 1

n

∑
i=1

kiXi =
n

∑
i=1

Xi

= ⋅
n

∑
i=1

(Xi − X̄)Xi

Xi − X̄

(Xi − X̄)2

1
n

∑
i=1

(Xi − X̄)2

n

∑
i=1

(Xi − X̄)2 =
n

∑
i=1

(Xi − X̄)Xi

n

∑
i=1

kiXi = 1
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check if if 

n

∑
i=1

(Xi − X̄)2 =
n

∑
i=1

(Xi − X̄)Xi

n

∑
i=1

(Xi − X̄)2 =
n

∑
i=1

(X2
i − 2XiX̄ + X̄

2
)

=
n

∑
i=1

X2
i − 2X̄

n

∑
i=1

Xi + nX̄X̄

=
n

∑
i=1

X2
i − 2X̄

n

∑
i=1

Xi + nX̄

=
n

∑
i=1

X2
i − X̄

n

∑
i=1

Xi

=
n

∑
i=1

(Xi − X̄)Xi

∑Xi

n
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Variance of b1

V {b1} = V {
n

∑
i=1

kiYi} =
n

∑
i=1

k2
iV {Yi} =

n

∑
i=1

k2
i ⋅ σ2

= σ2
n

∑
i=1

k2
i = σ2 1

n

∑
i=1

(Xi − X̄)2
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Variance of b1
n

∑
i=1

k2
i =

n

∑
i=1

[ ]
2

=
n

∑
i=1

= ⋅
n

∑
i=1

(Xi − X̄)2

=

Xi − X̄

(Xi − X̄)2

(Xi − X̄)2

[(Xi − X̄)2]
2

1

[
n

∑
i=1

(Xi − X̄)2]
2

1
n

∑
i=1

(Xi − X̄)2
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Estimated Variance
We can now estimate the variance of the sampling distribution of 

we can replace the parameter  with  which we know is the unbiased estimator

of .

b1

V {b1} =
σ2

n

∑
i=1

(Xi − X̄)2

σ2 MSE
σ2

s2{b1} =
MSE

n

∑
i=1

(Xi − X̄)2

18 / 37



Review of related distributions
Let  be a random variable that follows a normal distribution with  and 

- The standard normal random is 

- Let  be independent normal, then we have that 

 is normally distributed with mean  and

variance 

Y E{Y } = μ
V {Y } = σ2

Z = → Z ∼ N(0, 1)
Y − μ

σ

Y1,Y2, . . . ,Yn
a1Y1 + a2Y2 + ⋯ + anYn ∑ aiE{Yi}

∑ a2
iV {Yi}
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Review of related distributions
- Let  be independent standard normal. A chi-square random

variable is defined as

where  is called the degrees of freedom (df)

and we have that 

Z1,Z2, . . . ,Zv

χ2(v) = Z2
1 + Z2

2 + ⋯ + Z2
v

v

E{χ2(v)} = v
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Review of related distributions
- For  and  we can define the  distribution as

with mean 

Z χ2(v) t

t(v) =
Z

[ ]
1/2

χ2(v)
v

E{t(v)} = 0
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Interval estimation
for interval estimation, we need the t-distribution

If we let  observations of 

then we get with

We have that  is t-distributed with n-1 degrees of freedom.

Y1, . . . ,Yn Y ∼ n(0, 1)

Ȳ = and s = [ ]
1/2

and s{Ȳ } =
∑Xi

n

∑(Yi − Ȳ )2

n − 1

s

√n

Ȳ − μ

s{Ȳ }
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Interval estimation
the confidence limits for  with confidence  areμ 1 − α

Ȳ ± t(1 − ;n − 1) s{Ȳ }
α

2
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Confidence interval for 
We have to similarly work for the confidence interval for .

We need t find the distribution of 

Like previously if  come form the same normal population, then  follows a t

distribution with  degrees of freedom

The degrees of freedom is  because only one parameter is needed to be estimated

β1

β1

b1 − β1

s{b1}

Yi
Ȳ − μ

s{Ȳ }
n − 1

n − 1
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Confidence interval for 
for the regression model, we need to estimate two parameters, thus we need 

In addition  is a linear combination of  therefore  is t distributed with 

degrees of freedom

β1

df = n − 2

b1 Yi
b1 − β1

s{b1}
n − 2
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Confidence interval for 
We note that the confidence interval for  and  are very similar

β1

Ȳ b1

Ȳ ± t(1 − ;n − 1) s{Ȳ }
α

2

b1 ± t(1 − ;n − 2) s{b1}
α

2
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Tests concerning 
Test statistics (TS) for testing means often takes the form

- estimate for parameter

- hypothesized value of parameter

- standard error

β1

TS =
EST − HYP

SE
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Tests concerning 
So for

We use test statistic

where  is t-distributed with  degrees of freedom and 

β1

H0 : β1 = β10

H1 : β1 ≠ β10

t = =
b1 − β10

√s2{b1}

b1 − β10

s{b1}

t n − 2 s2{b1} =
MSE

∑(Xi − X̄)2
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Inference concerning 
This is a more limited scope since not all models are in scope when 

Recall that  and

We can get an estimator of  by replacing  with 

β0

X = 0

b0 = Ȳ − b1X̄

E{b0} = β0 and V {b0} = σ2 [ + ]
1

n

X̄
2

∑(Xi − X̄)2

V {b0} σ2 MSE

s2{b0} = MSE [ + ]
1

n

X̄
2

∑(Xi − X̄)2

29 / 37



Sampling distribution of 

The sampling distribution of  can be be set up in a similar fashion to how the

sampling distribution of  was set up.

We have that  is t-distributed with  degrees of freedom

(b0 − β0)/s{b0}
(b0 − β0)

s{b0}
(b1 − β1)

s{b1}

(b0 − β0)

s{b0}
n − 2
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Confidence interval for 
The confidence interval for  is similarly set up in the same way as  and they are

β0

β0 β1

b0 ± t(1 − ;n − 2)s{b0}
α

2
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Hypothesis tests
For

the test statistic is

H0 : β0 = 0

H1 : β0 ≠ 0

t =
b0 − β0


 
⎷

MSE [ + ]
1

n

X̄
2

∑(Xi − X̄)2
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Interval estimation of 
Let  denote the level of  for which we wish to estimate the mean response

The point estimator  of  is given by

E{Yh}
Xh X

Ŷ h E{Yh}

Ŷ h = b0 + b1Xh
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Normality
The normality of the sampling distribution of  follows directly from the fact that 

is a linear combination of the observation .

Ŷ h Ŷ h

Yi

34 / 37



Mean
We have

since  is a unbiased estimate of 

E{Ŷ h} = E{b0 + b1Xh} = b0 + b1Xh

Ŷ h E{Yh}
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Variance

Note: The variability of the sampling distribution of  is affected by how far  is

from  since we have 

V {Ŷ h} = σ2 [ + ]
1

n

(Xh − X̄)2

∑(Xi − X̄)2

Ŷ h Xh

X̄ (Xh − X̄)2
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Confidence interval
We define

which is t-distributed with  degrees of freedom, and the corresponding

confidence interval is

Ŷ h − E{Yh}

s{Ŷ h}

n − 2

Ŷ h ± t(1 − ;n − 2) s{Ŷ h}
α

2
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