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## 

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

## 

##     filter, lag

## The following objects are masked from 'package:base':

## 

##     intersect, setdiff, setequal, union

Linear Regression with one Predictor
Variable
Definition

Regression analysis is a statistical methodology that utilizes the relation

between two or more quantitative variables so that a response variable can be

predicted from the others
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Examples

Sales of a product predicted by the amount of advertising spent

Amount of rain predicted by hours of rain
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Relationos between variables
- Functional relation

- Statistical Relation
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Functional Relation
Is expression by a mathematical formula

where  is a function mapping  to .

Y = f(X)

f X Y

5 / 43



Case:

Money made (Y) of a product sold at a

fixed price and the number of units sold

(X)

Price of unit: 2

The functional relation will be

Functional Relation

Y = 4X
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Statistical Relation
We don't have a perfect relation between the variables

In other words, the points will not always fall on the line

The relationship between the response and predictors can strong or weak depending

on the case
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Case:

mid-year and year-end performance for

employees

The Statistical relation will be

Notice how the relationship is not

perfect

Statistical Relation

Y = X + ε
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The scattering of the points represents

variation in the year-end performance

that is not associated with the mid-year

performance

Statistical Relation
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The scattering of the points represents

variation in the year-end performance

that is not associated with the mid-year

performance

And it can be a small amount of

variation

Statistical Relation
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The scattering of the points represents

variation in the year-end performance

that is not associated with the mid-year

performance

And it can be a large amount of

variation

Statistical Relation
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: Age 

: Gender : Height : Weight

: Peak plasma growth hormone level

There is a probability distribution of Y

for each level of 

Sneak peek: More than one predictor
variable
Example: Study of short children

X1

X2 X3 X4

Y

Xi
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Construction of Regression models
- Selection of predictor variables (more about this in chapter 9)

- Functional form of regression relation

- Scope of Model, must be generalizable
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Use of regression Analysis
- Description/Inference

- Control

- Prediction
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Regression and Causality
The existence of a statistical relation between the response variable Y and the

predictor X does not imply that Y depends on X

Example:

X: Size of vocabulary Y: Writing speed of children

Will show a positive statistical relation

This does not imply that an increase in vocabulary causes a faster writing speed

What is more likely is that a 3rd variable such as "age of the child" positively affects

both
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Regression and Causality
This should not mean that statistical relations never have a causal link, but that we

need to spend a little more time with the problem to infer that there is one
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Notation

 Value of response variable at the th observation

 parameters (1 value each)

 Value of response variable at the th observation

 Random error at th observation

 is the random error term with mean  and 

The different error terms are uncorrelated

Yi = β0 + β1Xi + εi

Yi i

β0, β1

Xi i

εi i

ε E{εi} = 0 V {εi} = σ2
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Notation

We say that  denotes a random variable and  denotes a potential value of that

random variable

Yi = β0 + β1Xi + εi

Y y
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Some observations
-  is the sum of  which is constant and the random term , hence  is

a random variable.

-  then 

- 

-  and  are uncorrelated since the error terms are uncorrelated

Yi β0 + β1Xi ε Yi

E{ε} = 0 E{Yi} = E{β0 + β1Xi + ε} = β0 + β1Xi

V {Yi} = V {β0 + β1Xi + ε} = V {εi} = σ2

Yi Yj
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Example
Relationship between the number of bids requested for contractors during a

week and the time required to prepare the bids

Let the regression model be

for i representing different weeks

Y: Number of hours required to prepare bids

X: Number of bids prepared in a week

Yi = 9.5 + 2.1Xi + εi
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Example
Relationship between the number of bids requested for contractors during a

week and the time required to prepare the bids

The regression function for this model is

If we suppose that the th week,  then we would expect the number of hours

spent preparing to be 104. But if the actual number of hours  then the error is 

 is the deviation or  from its mean value 

EY = 9.5 + 2.1X

i Xi = 45
Yi = 108

εi = 4

εi Yi E{Yi}

21 / 43



Meaning of Regression Parameters

: Slope of the regression line. It indicates the change in the mean of the probability

distribution of Y per unit increase in X.

:  intercept of the regression line. When  gives mean of probability

distribution of .

Yi = β0 + β1Xi + εi

β1

β0 Y X = 0
Y
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Estimation of Regression Function
The data will be used to estimate the parameters of the regression function.

We will think of the observations  as consisting of the pair of numbers(X, Y )

(X1, Y1), (X2, Y2), . . . , (Xn, Yn)
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Method of least squares
We use the method of least squares (MLS) to effectively estimate  and β0 β1
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Method of least squares
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Method of least squares
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Method of least squares
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Method of least squares
The error is

so we want to minimize

This can be done in 2 ways:

- Numerical search procedure

- Analytical procedures

Yi − (β0 + β1Xi)

Q =
n

∑
i=1

(Yi − (β0 + β1Xi))2
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Method of least squares
Since we have

that means that  is a function of  and .

To estimate  and  we can take the partial derivatives of  with respect to  and 

.

Q =
n

∑
i=1

(Yi − (β0 + β1Xi))2

Q β0 β1

β0 β1 Q β0 β1
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Method of least squares

= −2
n

∑
i=1

(Yi − β0 − β1Xi) = 0 →
n

∑
i=1

Yi − nβ0 − β1

n

∑
i=1

Xi = 0 (1)
∂Q

∂β0

= −2
n

∑
i=1

(Yi − β0 − β1Xi)Xi = 0 →
n

∑
i=1

XiYi − β0

n

∑
i=1

Xi − β1

n

∑
i=1

X2
i = 0 (2)

∂Q

∂β1
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Method of least squares

So .

(1) → nβ0 =
n

∑
i=1

Yi − β1

n

∑
i=1

Xi → β0 =
n

∑
i=1

− β1

n

∑
i=1

Yi

n

Xi

n

b0 = Ȳ = β1X̄
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Method of least squares
And we will see in chapter 2 that

we can rearrange the terms in  that(2)

b1 =
∑(Xi − X̄)(Yi − Ȳ )

∑(Xi − X̄)2
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Properties of Least Squares Estimators
- Unbiased property  and 

- Variance it can be shown that  gives the minimum variance in the group of

linear and unbiased estimators.

These two points are part of the Gauss-Markov theorem

E{b1} = β1 E{b0} = β0

b0, b1
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Point estimator of Mean Response
Given  and  of the parameters in the regression function

We estimate the regression as follows

Also  is unbiased with minimum variance

Which means that

b0 b1

E{Yi} = β0 + β1Xi

Ŷ = b0 + b1X

Ŷ

Ŷi = b0 + b1Xi, i = 1, . . . , n
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Residuals
The th residual is denoted by  and is defined as

For the regression model

the residual  is defined as

i ei

ei = Yi − Ŷ i

Yi = β0 + β1Xi + εi

ei

ei = Yi − (b0 + b1Xi) = Yi − b0 − b1Xi
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Residuals
 is the vertical deviation of $Y_i% from the unknown true regression

line

 is the vertical deviation of  from the fitted value  on the estimated

regression line and is thus known

Residuals are useful for studying whether a given regression model is appropriate for

the data at hand (chapter 3)

εi = Yi − E{Yi}

ei = Yi − Ŷi Yi Ŷi
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Properties of the fitted regression line
- Sum of residuals is zero

- The sum of the squred residuals is minimum.

- 

n

∑
i=1

ei = 0

n

∑
i=1

Yi =
n

∑
i=1

Ŷ i
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Properties of the fitted regression line

- 

- 

- The regression line goes through 

n

∑
i=1

Xiei = 0

n

∑
i=1

Ŷ iei = 0

(X̂, Ŷ )
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Estimationn of Error Terms Variance
The variance  of  needs to be estimated to obtain an indication of the variability of

the probability distribution of 

The variance of a single population is estimated by sample variance 

σ2 εi

Y

s2

s2 =
n

∑
i=1

(Yi − Ȳ )2

(n − 1)
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Estimationn of Error Terms Variance
Similar to estimators for  for the regression model we have

since  come fromo different distributions the sum of squares  is

Now we know that  has  degrees of freedom.

σ2

ei = Yi = Ŷ i

Yi SSE

SSE =
n

∑
i=1

(Yi − Ȳ )2 =
n

∑
i=1

e2
i

SSE n − 2
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Estimationn of Error Terms Variance
Two degrees of freedom are lost because both  and  need to be estimated in

obtaining the estimated means , hence

where  = error mean square

It can be shown that  of the regression model

β0 β1

Ŷ i

s2 = MSE = =
SSE

n − 2

n

∑
i=1

e2
i

n − 2

MSE

E{s2} = E{MSE} = σ2

Yi = β0 + β1Xi + εi
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The sample mean is: 

The sample sd is: 

We then get that

Confidence intervals
Let  be a random sample of  observations from a normal population

with mean  and standard deviation .

Y1, Y2, . . . , Yn n
μ σ

Ȳ =
∑n

i=1 Y

n

s =

⎡
⎢ ⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥ ⎥
⎦

1/2n

∑
i=1

(Yi − Ȳ )2

n − 1

Ȳ ∼ μȲ = μ & σȳ =
σ

√n
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Confidence intervals
Thus the estimates standard deviation is 

We define  t-distributed with  degrees of freedom

The confidence interval for  are

s{Ȳ } = σ

√n

Ȳ − μ

s{Ȳ }
n − 1

μ

Ȳ ± t(1 − α/2, n − 1)s{Ȳ }
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