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Support Vector Machines
A fairly new contender in the machine learning space

A generalization of the maximal margin classifier

We will talk about

- the maximal margin classifier

- How it can be extended to the support vector classifier (SVM)

- How the SVM can be extended using non-linear separators
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What is a hyperplane?
We know that a line can separate a 2-dimensional space, and the plane can separate a

3-dimensional space

A hyperplane in  dimensions is a flat subspace of dimension 

This will generalize to any number of dimensions but can be hard to visualize for 

p p − 1

p > 3
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What is a hyperplane?
A hyperplane will separate a space into regions, one for each side (technically 3 since a

point can be directly on the hyperplane)

In two dimensions a hyperplane is defined by the equation

And this is the hyperplane where any pair of  that satisfy this equation

is on the hyperplane

β0 + β1X1 + β2X2 = 0

X = (X1,X2)T
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What is a hyperplane?
The two regions formed by this hyperplane are the points that satisfy

and

β0 + β1X1 + β2X2 > 0

β0 + β1X1 + β2X2 < 0
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0.2 + 0.2X − 0.8Y = 0
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Creating a classifier
Idea:

Given some data, we can find a hyperplane that separates the data

such that we can use the hyperplane defined to classify new observations
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The Maximal Margin Classifier
There might be many different hyperplanes that separate

that can separate two different regions but we would ideally want to have only one

The Maximal Margin Classifier aims the find the hyperplane that separates the

perpendicular distance to the
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Hyperplane only depends on closest points
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Hyperplane only depends on closest points
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Support vectors
The vectors from the border points to the hyperplane are the support vectors

These are the only points that directly have any influence on the model
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What happens when we can't separate
the regions?
The idea of a Maximal Margin Classifier is great but it will rarely work in practice

since it only works for regions that are separately

Create an extension that allows for hyperplanes that "almost" separate the regions

This hyperplane would be called a soft margin
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Support Vector Classifiers
- Greater robustness to individual observations, and

- Better classification of most of the training observations.

This is once again a trade-off
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Support Vector Classifiers
How do we create hyperplanes that "almost" separate our two classes of observations
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Support Vector Classifiers
 are slack variables

and they allow individual observations to be on the wrong side of the margin or the

hyperplane

if

-  then the th observation is on the right side of the hyperplane

-  then the th observation is on the wrong side of the margin

-  then the th observation is on the wrong side of the hyperplane

ϵ1, . . . , ϵn

ϵi = 0 i

ϵi > 0 i

ϵi > 1 i
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Support Vector Classifiers
We can think of  as a budget of violations

- if  then we have a maximal margin classifier

- if  no more than  observations can be on the wrong side of the

hyperplane

When  increase we become more tolerant of violations and the margin widens

When  decreases we become less tolerant of violations and the margin widens

C

C = 0

C > 0 C

C

C
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Support Vector Classifiers
Note:

SVM are typically fitted iteratively, if  is chosen too low then there are no correct

solutions

C
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Support Vector Classifiers
 is essentially a tuning parameter that controls the bias-variance trade-off

- Small  gives narrow margins that are rarely violated, highly fit the data, low

bias, high variance

- Large  gives wide margins that are more often violated, loosely fit data, high

bias, low variance

C

C

C
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Support Vector Classifiers
Only wrongly predicted points affect the hyperplane

Support Vector Classifier are very robust to outliers as they have no effect
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Support Vector Machine
Support vector classifiers work well when the classes are linearly separable

We saw in earlier chapters how we handle non-linear transformations by enlargening

the feature-space

We can do this in (at least) two ways, using polynomials and kernels
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Support Vector Machine
Without going into too many details, the main algorithm at works ends up calculation

similarities between two observations

Which is some function called a kernel.

Depending on what  is we get different results.

K(xi,xi′)

K
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Support Vector Machine

is known as a linear kernel

K(xi,xi′) =
p

∑
j=1

xijxi′j

22 / 35



23 / 35



Linear kernel
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Support Vector Machine

is known as a polynomial kernel of degree 

K(xi,xi′) = (1 +
p

∑
j=1

xijxi′j)

d

d
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Polynomial kernel of degree 2

26 / 35



Polynomial kernel of degree 3
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Polynomial kernel of degree 15
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Support Vector Machine

is known as a radial kernel

Where  is a positive constant

This means that the radial kernel has very local behavior

K(xi,xi′) = exp(−γ

p

∑
j=1

(xijxi′j)
2)

γ
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radial kernel γ = 1
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radial kernel γ = 10
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radial kernel γ = 100
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SVMs for more than 2 classes
This is a more general question

How do we extend a binary classifier to multi-classification

- one-versus-one

- one-versus-all
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One-Versus-One Classification
If we have  classes

We construct  binary classification models, each comparing 2 classes

An observation is classified by running each of the  and tallying up the results

The observation is assigned the class that was predicted most often in the  models

K > 2

( )K
2

( )K
2

( )K
2
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One-Versus-All Classification
If we have  classes

We fit  models, each comparing 1 class against the  remaining classes

Whichever model performs best wins the observation

K > 2

K K − 1
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