
Logistic Regression

AU STAT-427/627

Emil Hvitfeldt

2021-09-13



Classification
Last we looked at regression tasks. In regression the response variable  is

quantitative

In classification tasks, the response variable  is qualitative

This Difference will present some challenges we will cover this week

Y

Y

2 / 54



3 / 54



Examples of classification tasks
- Should we sent an email ad to this person?

- Are these symptoms indicative of cancer?

- Given an image, which fruit is depicted?

Two or more classes

There can be uncertainty

Can be more than one class at the same time

4 / 54



Classification visual

5 / 54



Classification visual - decision boundary

6 / 54



Classification visual

7 / 54



Classification visual - no hope

8 / 54



Nonlinear decision boundary

9 / 54



Logistic regression
conceptually creates a linear line separating 2 classes

Low flexibility, explainable method

(we will talk about LDA, QLA, and K-nearest neighbors on Wednesday)

10 / 54



Logistic regression
You might ask

- Why can't you use linear regression?

11 / 54



Response encoding
Propose we want to classify what kind of wine to market:

- red

- white

 has to be numeric for a linear model to work.

We could decode .

but what would happen if we let 

Y

red = 0,white = 1

Ŷ > 1

12 / 54



Response encoding
What if we have more than 2 classes?

- red

- white

- rose

- dessert

- sparkling

We can't do  because there

isn't natural ordering and nothing to indicate that dessert wine is twice of white wine

red = 1,white = 2, rose = 3, dessert = 4, sparking = 5

13 / 54



Logistic regression
logistic (abstractly) models the probability that Y corresponds to a particular category

Now some mathematics!

14 / 54



The Logistic Model
We want to model the relationship between  and .

If we use a linear formulation

then we will get negative probabilities which would be no good!

p(X) = Pr(Y = 1|X) X

p(X) = β0 + β1X

15 / 54



We need to restrict the values of  to

be between 0 and 1

We can use the logistic function

The Logistic Model

p(X)

f(x) =
ex

1 − ex

16 / 54



The Logistic Model
Using the logistic function gives us

Now no matter what the values of ,  or ,  will always be contained between

0 and 1.

p(X) =
eβ0+β1X

1 + eβ0+β1X

X β0 β1 p(X)

17 / 54



The Logistic Model
If we start with

and we see that this looks familiar, it is the linear combination we saw in linear

regression we saw last week

Explain what the parameter estimates mean

p(X) =
eβ0+β1X

1 + eβ0+β1X

18 / 54



odds
If we start with

after rearrangement gives

p(X) =
eβ0+β1X

1 + eβ0+β1X

= eβ0+β1X
p(X)

1 + p(X)

19 / 54



odds
If we start with

after rearrangement gives

This is called the odds and can take any value between 0 and .

p(X) =
eβ0+β1X

1 + eβ0+β1X

= eβ0+β1X
p(X)

1 + p(X)

∞

20 / 54



log-odds
If we start with

after rearrangement gives

taking the logarithm

p(X) =
eβ0+β1X

1 + eβ0+β1X

= eβ0+β1X
p(X)

1 + p(X)

log( ) = β0 + β1X
p(X)

1 + p(X)

21 / 54



log-odds

The left-hand side is called the log-odds or logit.

log( ) = β0 + β1X
p(X)

1 + p(X)

22 / 54



How is this a classifier?
Logistic regression is not modeling classes

Logistic regression is modeling the probabilities that Y is equal on of the classes

Logistic regression turns into a classifier by picking a cutoff (usually 50%) and

classifying according to this threshold.

23 / 54



Logistic regression decision boundary

24 / 54



Non-linear separator

25 / 54



Coefficients
Understanding:

Increasing  by one unit changes the log odds by a factor of 

The amount of change in  depends on the current value of 

X eβ1

p(X) X

26 / 54



Making Predictions
Fitting the model gives us  and  which we can use to construct 

Plugging in the values of ,  and  gives us a prediction

β̂0 β̂1 p̂(X)

p̂(X) =
eβ̂0+β̂1X

1 + eβ̂0+β̂1X

β̂0 β̂1 X

27 / 54



Example with penguins
library(palmerpenguins)

penguins2 <- penguins %>%

  mutate(species = factor(species == "Adelie", 

                          labels = c("Adelie", "Not Adelie")))

library(parsnip)

lr_spec <- logistic_reg() %>%

  set_engine("glm") %>%

  set_mode("classification")

lr_fit <- lr_spec %>%

  fit(species ~ bill_length_mm + bill_depth_mm + body_mass_g,

      data = penguins2)

28 / 54

https://allisonhorst.github.io/palmerpenguins


Example with penguins
lr_fit

## parsnip model object

## 

## Fit time:  4ms 

## 

## Call:  stats::glm(formula = species ~ bill_length_mm + bill_depth_mm + 

##     body_mass_g, family = stats::binomial, data = data)

## 

## Coefficients:

##    (Intercept)  bill_length_mm   bill_depth_mm     body_mass_g  

##      32.965109       -4.903438        8.616116        0.006746  

## 

## Degrees of Freedom: 341 Total (i.e. Null);  338 Residual

##   (2 observations deleted due to missingness)

## Null Deviance:        469.4 

## Residual Deviance: 9.652     AIC: 17.65

29 / 54

https://allisonhorst.github.io/palmerpenguins


Example with penguins
tidy(lr_fit)

## # A tibble: 4 × 5

##   term           estimate std.error statistic p.value

##   <chr>             <dbl>     <dbl>     <dbl>   <dbl>

## 1 (Intercept)    33.0      25.6          1.29  0.199 

## 2 bill_length_mm -4.90      2.65        -1.85  0.0647

## 3 bill_depth_mm   8.62      4.81         1.79  0.0733

## 4 body_mass_g     0.00675   0.00385      1.75  0.0800

30 / 54

https://allisonhorst.github.io/palmerpenguins


Multi class classification
We have so far only talked about what happens with 2 classes

Logistic regression isn't able to work with multiple classes since it finds 1 best line to

separate 2 classes

31 / 54



Logistic regression multiclass struggles

32 / 54



Logistic regression multiclass struggles

33 / 54



Evaluation
To evaluate a classifier we need to quantify how good and bad it is performing

Different metrics will be different algebraic combinations of the above numbers

34 / 54



Evaluation metrics
Accuracy

Percentage of correct predictions

Drawback: If there are two classes A and B split 99% and 1%, you can get an accuracy

of 99% by always predicting A

TN + TP

TN + FN + FP + TP

35 / 54



Evaluation metrics
Sensitivity

Defined as the proportion of positive results out of the number of samples that were

positive

TP

FP + TP

36 / 54



Evaluation metrics
Specificity

Measures the proportion of negatives that are correctly identified as negatives

TP

FP + TP

37 / 54



ROC curve

38 / 54



Test-Train split
We have spent some time talking about fitting model and measuring performance

However, we need to be careful about how we go about that

performance metrics calculated on the data that was used to fit the data is likely to

mislead

39 / 54



Test-Train split
In a prediction model, we are interested in the generalized performance. e.i. how well

the model can perform on data it hasn't seen

40 / 54



Test-Train split

41 / 54



Test-Train split
We split the data into two groups (typically 75%/25%)

- training data set

- testing data set

We do the modeling on the training data set (it can be multiple models)

And then we use the testing data set ONCE to measure the performance

42 / 54



Why 75%/25%?
There are no real guidelines as to how you split the data

80/20 split is also used

It Will depend on data size

43 / 54



Why just once?
If you are working in a prediction setting, the testing data set represents fresh new data

If you modify your model you are essentially using information from the future to

guide your modeling decisions

This is a kind of data-leakage and it will lead to overconfidence in the model and will

come back to bite you once you start using the model

44 / 54



How will I be able to iterate?
We will talk more about how to efficiently use data in later weeks

45 / 54



How should we handle unbalanced classes?

46 / 54



How should we handle unbalanced classes?

47 / 54



How should we handle unbalanced classes?

48 / 54



stratified sampling
This stratification also works for regression tasks. The variable can be binned and

samples to ensure equal distribution between training and testing data

There is very little downside to using stratified sampling.

49 / 54



More Data Leakage
Performing training-testing split in another place where data can leak

Any transformation done to the data should be done AFTER the split occurs as to not

have had future information affect the modeling process

50 / 54



rsample
sample provides functionally to perform all different kinds of data splitting

with a minimal footprint

51 / 54

https://rsample.tidymodels.org/


rsample example
We bring back the penguins

penguins

## # A tibble: 344 × 8

##    species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

##    <fct>   <fct>              <dbl>         <dbl>             <int>       <int>

##  1 Adelie  Torgersen           39.1          18.7               181        3750

##  2 Adelie  Torgersen           39.5          17.4               186        3800

##  3 Adelie  Torgersen           40.3          18                 195        3250

##  4 Adelie  Torgersen           NA            NA                  NA          NA

##  5 Adelie  Torgersen           36.7          19.3               193        3450

##  6 Adelie  Torgersen           39.3          20.6               190        3650

##  7 Adelie  Torgersen           38.9          17.8               181        3625

##  8 Adelie  Torgersen           39.2          19.6               195        4675

##  9 Adelie  Torgersen           34.1          18.1               193        3475

## 10 Adelie  Torgersen           42            20.2               190        4250

## # … with 334 more rows, and 2 more variables: sex <fct>, year <int>

52 / 54



rsample example
Use initial_split()  from rsample to generate a rsplit  object

set.seed(1234) # remember the seed!

penguins_split <- initial_split(penguins)

penguins_split

## <Analysis/Assess/Total>

## <258/86/344>

This object store the information of what observations belong to each data set

53 / 54



rsample example
training()  and testing()  is used to extract the training data set and testing data set

set.seed(1234) # remember the seed!

penguins_split <- initial_split(penguins)

penquins_train <- training(penguins_split)

penquins_test <- testing(penguins_split)

dim(penquins_train)

## [1] 258   8

dim(penquins_test)

## [1] 86  8

54 / 54


